已知f(x)=sinx,g(x)=cosx,則有[f(x)]2+[g(x)]2=1,f(2x)=2f(x)g(x),類(lèi)比上列,若設(shè)f(x)=數(shù)學(xué)公式,g(x)=數(shù)學(xué)公式,則可得到f(x)與g(x)的一個(gè)關(guān)系式是________.(只須寫(xiě)出一種即可)

f(2x)=2f(x)g(x)
分析:寫(xiě)出“二倍角的正弦公式”的形式,據(jù)此二倍角公式寫(xiě)出類(lèi)比結(jié)論即可.
解答:∵“二倍角的正弦公式”的形式是:
sin2x=2sinxcosx,
有類(lèi)比結(jié)論:
設(shè)f(x)=,g(x)=,
則可得到f(x)與g(x)的一個(gè)關(guān)系式是 f(2x)=2f(x)g(x).
證明如下:
∵f(x)=,g(x)=,
∴f(x)g(x)=×==f(2x)
∴f(2x)=2f(x)g(x).
故答案為:f(2x)=2f(x)g(x).
點(diǎn)評(píng):本題考查利用類(lèi)比推理從形式上寫(xiě)出類(lèi)比結(jié)論,寫(xiě)類(lèi)比結(jié)論時(shí):先找類(lèi)比對(duì)象,再找類(lèi)比元素.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( �。�
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對(duì)稱(chēng)
C、向左平移
π
2
個(gè)單位,得到g(x)的圖象
D、向右平移
π
2
個(gè)單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)
;
(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時(shí)x值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹