已知二次函數(shù)y=f1(x)的圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點(diǎn)間距離為8,f(x)=f1(x)+f2(x).
(1)求函數(shù)f(x)的表達(dá)式;
(2)證明:當(dāng)a>3時,關(guān)于x的方程f(x)=f(a)有三個實(shí)數(shù)解.
【答案】
分析:(1)由題意已知二次函數(shù)y=f
1(x)的圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),設(shè)出函數(shù)的解析式,然后根據(jù)待定系數(shù)法求出函數(shù)的解析式;
(2)由已知f(x)=f(a),得x
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/0.png)
=a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/1.png)
,在同一坐標(biāo)系內(nèi)作出f
2(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/2.png)
和f
3(x)=-x
2+a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/3.png)
的大致圖象,然后利用數(shù)形結(jié)合進(jìn)行討論求證.
解答:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/images4.png)
解:(1)由已知,設(shè)f
1(x)=ax
2,由f
1(1)=1,得a=1,
∴f
1(x)=x
2.
設(shè)f
2(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/4.png)
(k>0),它的圖象與直線y=x的交點(diǎn)分別為
A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/5.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/6.png)
)B(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/7.png)
,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/8.png)
)
由|AB|=8,得k=8,.∴f
2(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/9.png)
.故f(x)=x
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/10.png)
.
(2)證法一:f(x)=f(a),得x
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/11.png)
=a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/12.png)
,
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/13.png)
=-x
2+a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/14.png)
.
在同一坐標(biāo)系內(nèi)作出f
2(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/15.png)
和f
3(x)=-x
2+a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/16.png)
的大致圖象,
其中f
2(x)的圖象是以坐標(biāo)軸為漸近線,且位于第一、三象限的雙曲線,
f
3(x)與的圖象是以(0,a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/17.png)
)為頂點(diǎn),開口向下的拋物線.
因此,f
2(x)與f
3(x)的圖象在第三象限有一個交點(diǎn),
即f(x)=f(a)有一個負(fù)數(shù)解.
又∵f
2(2)=4,f
3(2)=-4+a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/18.png)
當(dāng)a>3時,.f
3(2)-f
2(2)=a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/19.png)
-8>0,
∴當(dāng)a>3時,在第一象限f
3(x)的圖象上存在一點(diǎn)(2,f(2))在f
2(x)圖象的上方.
∴f
2(x)與f
3(x)的圖象在第一象限有兩個交點(diǎn),即f(x)=f(a)有兩個正數(shù)解.
因此,方程f(x)=f(a)有三個實(shí)數(shù)解.
證法二:由f(x)=f(a),得x
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/20.png)
=a
2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/21.png)
,
即(x-a)(x+a-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/22.png)
)=0,得方程的一個解x
1=a.
方程x+a-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/23.png)
=0化為ax
2+a
2x-8=0,
由a>3,△=a
4+32a>0,得
x
2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/24.png)
,x
3=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/25.png)
,
∵x
2<0,x
3>0,∴x
1≠x
2,且x
2≠x
3.
若x
1=x
3,即a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/26.png)
,則3a
2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/27.png)
,a
4=4a,
得a=0或a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101635422512358/SYS201311031016354225123020_DA/28.png)
,這與a>3矛盾,∴x
1≠x
3.
故原方程f(x)=f(a)有三個實(shí)數(shù)解.
點(diǎn)評:此題考查了方程根的存在性及其個數(shù)的判斷,還考查了待定系數(shù)法求函數(shù)的解析式,綜合性比較強(qiáng),難度比較大.