【題目】(本小題滿分13分)已知函數(shù)(為常數(shù),)
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)求證:當(dāng)時(shí),在上是增函數(shù);
(3)若對(duì)任意的,總存在,使不等式成立,求正實(shí)數(shù)的取值范圍.
【答案】(1)2;(2)見解析;(3).
【解析】
試題分析:(1)利用函數(shù)在處的導(dǎo)數(shù)為0即可求出的值;(2)利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系跑到導(dǎo)函數(shù)在區(qū)間上恒大于0即可(3)若可導(dǎo)函數(shù)在指定的區(qū)間上單調(diào)遞增(減),求參數(shù)問(wèn)題,可轉(zhuǎn)化為恒成立,從而構(gòu)建不等式,要注意“=”是否可以取到.
試題解析: 1分
(1)由已知,得且, 2分
3分
(2)當(dāng)時(shí),
4分
當(dāng)時(shí),又 5分
故在上是增函數(shù)
(3)時(shí),由(2)知,在上的最大值為
于是問(wèn)題等價(jià)于:對(duì)任意的,不等式恒成立. 7分
記
則. 8分
因?yàn)?/span> 9分
若,可知在區(qū)間上遞減,在此區(qū)間上,有
,與恒成立相矛盾,故,這時(shí), 12分
在上遞增,恒有,滿足題設(shè)要求,
即實(shí)數(shù)的取值范圍為 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線PQ與⊙O切于點(diǎn)A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點(diǎn)C,連接CB,并延長(zhǎng)與直線PQ相交于Q點(diǎn).
(1)求證:QC·AC=QC2-QA2;
(2)若AQ=6,AC=5,求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=kx2+2x(k為實(shí)常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當(dāng)a=時(shí),g(x)≤t2﹣2mt+1對(duì)所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(jī)(均為整數(shù))分成六段: , , ,…后得到如下頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績(jī)的中位數(shù)(精確到0.1)、眾數(shù)、平均數(shù);
(2)用分層抽樣的方法抽取一個(gè)容量為20的樣本,求各分?jǐn)?shù)段抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:橢圓與雙曲線有相同的焦點(diǎn)、,它們?cè)?/span>軸右側(cè)有兩個(gè)交點(diǎn)、,滿足.將直線左側(cè)的橢圓部分(含, 兩點(diǎn))記為曲線,直線右側(cè)的雙曲線部分(不含, 兩點(diǎn))記為曲線.以為端點(diǎn)作一條射線,分別交于點(diǎn),交于點(diǎn)(點(diǎn)在第一象限),設(shè)此時(shí).
(1)求的方程;
(2)證明: ,并探索直線與斜率之間的關(guān)系;
(3)設(shè)直線交于點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點(diǎn),AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點(diǎn)D到平面ACE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過(guò)線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過(guò)的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com