如圖,在正三棱柱中, 的沿長(zhǎng)線上一點(diǎn),過(guò)三點(diǎn)的平面交,交 

(Ⅰ)求證:∥平面;

(Ⅱ)當(dāng)平面平面時(shí),求的值.

 

【答案】

(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052421563043755689/SYS201205242158222187770667_DA.files/image001.png">∥,在平面外,所以∥平面;……2分

是平面與平面的交線,所以,故;…………4分

在平面外,所以∥平面……6分

注:不寫“在平面外”等條件的應(yīng)酌情扣分;向量方法按建系、標(biāo)點(diǎn)、求向量、算結(jié)果這四個(gè)步驟是否正確來(lái)評(píng)分.

(Ⅱ)解法一:取中點(diǎn)、中點(diǎn)則由

在同一平面上,并且由而與(Ⅰ)同理可證平行于平面與平面的交線,因此,也垂直于該交線,但平面平面,所以平面,…………8分

于是,

…………10分

…………12分

注:幾何解法的關(guān)鍵是將面面垂直轉(zhuǎn)化為線線垂直,閱卷時(shí)應(yīng)注意考生是否在運(yùn)用相關(guān)的定理.

(Ⅱ)解法二:如圖,取中點(diǎn)、中點(diǎn).  以為原點(diǎn),軸、軸、軸建立空間直角坐標(biāo)系.

則在平面中,,向量

設(shè)平面的法向量,則由

………8分

在平面中,,向量

設(shè)平面的法向量,由

…10分

平面平面,,即………12分

注:使用其它坐標(biāo)系時(shí)請(qǐng)參考以上評(píng)分標(biāo)準(zhǔn)給分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱中,AB=2,AA1=2由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過(guò)棱AA1到頂點(diǎn)C1的最短路線與棱AA1的交點(diǎn)記為M,求:
(1)該最短路線的長(zhǎng)及
A1MAM
的值.
(2)平面C1MB與平面ABC所成二面角(銳角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱中,底面△的邊長(zhǎng)為,的中點(diǎn),三棱柱的體積

(1)求該三棱柱的側(cè)面積;

(2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西南昌10所省高三第二次模擬沖刺理科數(shù)學(xué)試卷(二)(解析版) 題型:解答題

如圖,在正三棱柱中,的中點(diǎn),是線段上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且.

(1)若,求證:;

(2)若直線與平面所成角的大小為,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三11月月考文科數(shù)學(xué)試卷 題型:填空題

如圖,在正三棱柱中,D為棱的中點(diǎn),若截面是面積為6的直角三角形,則此三棱柱的體積為        

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年西藏拉薩中學(xué)高三第七次月考考試?yán)砜茢?shù)學(xué) 題型:填空題

如圖,在正三棱柱中,.若二面角的大小為,則點(diǎn)到平面的距離為                 。  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案