精英家教網 > 高中數學 > 題目詳情
若X~B(n,p),且E(X)=6,V(X)=3,則P(X=1)的值為________.
3×2-10

∴P(X=1)=C12112=3×2-10.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

為了解心肺疾病是否與年齡相關,現隨機抽取了40名市民,得到數據如下表:
 
患心肺疾病
不患心肺疾病
合計
大于40歲
16
 
 
小于等于40歲
 
12

合計
 
 
40
已知在全部的40人中隨機抽取1人,抽到不患心肺疾病的概率為
(1)請將列聯(lián)表補充完整;
(2)已知大于40歲患心肺疾病市民中,經檢查其中有4名重癥患者,專家建議重癥患者住院治療,現從這16名患者中選出兩名,記需住院治療的人數為,求的分布列和數學期望;
(3)能否在犯錯誤的概率不超過0.01的前提下認為患心肺疾病與年齡有關?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在一段線路中并聯(lián)著3個自動控制的常開開關,只要其中一個開關能夠閉合,線路就能正常工作,假定在某段時間內,每個開關能夠閉合的概率都是0.7,計算在這段時間內:
(1)開關JA,JB恰有一個閉合的概率;
(2)線路正常工作的概率。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)2009年4月22日是第40個“世界地球日” (World Earth Day),在某校舉辦的《2009“世界地球日”》知識競賽中,甲、乙、丙三人同時回答一道有關保護地球知識的問題,已知甲回答對這道題的概率是,甲、丙兩人都回答錯誤的概率是,乙、丙兩人都回答對的概率是
(Ⅰ)求乙、丙兩人各自回答對這道題的概率.
(Ⅱ)求甲、乙、丙三人中恰有兩人回答對該題的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某校150名教職工中,有老年人20個,中年人50個,青年人80個,從中抽取20個作為樣本.
①采用隨機抽樣法:抽簽取出30個樣本;
②采用系統(tǒng)抽樣法:將教工編號為00,01,…,149,然后平均分組抽取30個樣本;
③采用分層抽樣法:從老年人,中年人,青年人中抽取30個樣本.
下列說法中正確的是(  )
A.無論采用哪種方法,這150個教工中每一個被抽到的概率都相等
B.①②兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;③并非如此
C.①③兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;②并非如此
D.采用不同的抽樣方法,這150個教工中每一個被抽到的概率是各不相同的

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設隨機變量X~B(2,p),Y~B(3,p),若P(X≥1)=,則P(Y=2)=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時間(單位:分鐘)進行了統(tǒng)計,如下表.若視頻率為概率,請用有關知識解決下列問題.
病癥及代號
普通病癥
復診病癥
常見病癥
疑難病癥
特殊病癥
人數
100
300
200
300
100
每人就診時間(單位:分鐘)
3
4
5
6
7
表示某病人診斷所需時間,求的數學期望.
并以此估計專家一上午(按3小時計算)可診斷多少病人;
某病人按序號排在第三號就診,設他等待的時間為,求;
求專家診斷完三個病人恰好用了一刻鐘的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,決出勝負即停止比賽。按以往的比賽經驗,每局比賽中,甲勝乙的概率為
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設比賽的局數為X,求X的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知隨機變量X服從二項分布,X~B,則P(X=1)的值為________.

查看答案和解析>>

同步練習冊答案