【題目】某項競賽分為初賽、復(fù)賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是 ,且各階段通過與否相互獨立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競賽中回答問題的個數(shù)為,求的分布列、數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點.
(1)求的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù),且當(dāng)時, ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,拋物線在第一象限內(nèi)的點到焦點的距離為,曲線在點處的切線交軸于點,直線經(jīng)過點且垂直于軸.
(Ⅰ)求線段的長;
(Ⅱ)設(shè)不經(jīng)過點和的動直線交曲線于點和,交于點,若直線的斜率依次成等差數(shù)列,試問:是否過定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示.
(Ⅰ)寫出及圖中的值.
(Ⅱ)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB=8,AD=5,CD=,∠A=,∠D=.
(Ⅰ)求△ABD的內(nèi)切圓的半徑;
(Ⅱ)求BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 面, , , 為的中點.
(Ⅰ)求證: 平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在點,使得,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com