【題目】已知橢圓,離心率為,直線恒過的一個焦點.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點,四邊形的頂點均在上,交于,且,若直線的傾斜角的余弦值為,求直線與軸交點的坐標(biāo).
【答案】(1)(2)
【解析】
(1)將轉(zhuǎn)化成直線點斜式方程形式,求出所過的恒點,進(jìn)而知道橢圓的焦點,再根據(jù)橢圓的離心率公式進(jìn)行求解即可.
(2)根據(jù)向量等式,可以確定分別是的中點.設(shè),求出直線的方程,與橢圓方程聯(lián)立,消元,利用一元二次方程根與系數(shù)關(guān)系,求出的坐標(biāo),同理求出點坐標(biāo),求出直線的方程,最后求出直線與軸交點的坐標(biāo).
(1)設(shè)橢圓的半焦距為,可化為,所以直線恒過點,所以點,可得.因為離心率為,所以,解得,由得,所以的標(biāo)準(zhǔn)方程為.
(2)因為,所以.由得分別是的中點.設(shè).由直線的傾斜角的余弦值為,得直線的斜率為2,所以,聯(lián)立消去,得.顯然,,且, ,所以,可得,同理可得,所以,所以.令,得,所以直線與軸交點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試后,對全班同學(xué)的數(shù)學(xué)成績進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標(biāo)系中,角的頂點是原點,始邊與軸正半軸重合.終邊交單位圓于點,且,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,記.
(1)若,求;
(2)分別過作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)為的“漸近函數(shù)”;
(1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;
(2)若函數(shù),證明:當(dāng)時,不是的漸近函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.
(1)求函數(shù)a的取值范圍;
(2)記函數(shù)的兩個極值點為,,且,證明對任意實數(shù),都有不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)且 )曲線的參數(shù)方程為(為參數(shù),且),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.
(1)求與的交點到極點的距離;
(2)設(shè)與交于點,與交于點,當(dāng)在上變化時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗.
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com