【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.

【答案】解:(Ⅰ)在△ABC中,∵cosB= , ∴B為銳角,tanB= ,
又tanC= ,tan(B+C)= = =1,
∴tanA=tan[180°﹣(B+C)]=﹣tan(B+C),
∴tanA=﹣1.
(Ⅱ)因0°<A<180°,由(Ⅰ)結(jié)論可得:A=135°,
∴在△ABC中,B,C均為銳角
∵cosB= ,tanC= ,
∴sinB= ,sinC=
∴由 ,得a=
故△ABC的面積為:S= acsinB=
【解析】(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求tanB的值,利用兩角和的正切函數(shù)公式可求tan(B+C),利用三角形內(nèi)角和定理,誘導(dǎo)公式即可得解tanA的值.(Ⅱ)結(jié)合范圍0°<A<180°,由(Ⅰ)可得A=135°,利用同角三角函數(shù)基本關(guān)系式可求cosB,sinB,sinC的值,利用正弦定理可求a,進(jìn)而利用三角形面積公式即可計(jì)算得解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的正切公式和正弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩角和與差的正切公式:;正弦定理:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象(
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò), ,且圓心在直線上.

Ⅰ)求此圓的方程

(Ⅱ)求與直線垂直且與圓相切的直線方程.

(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫(huà)出函數(shù)軸左側(cè)的圖象,如圖所示,請(qǐng)根據(jù)圖象.

)寫(xiě)出函數(shù)的增區(qū)間.

)寫(xiě)出函數(shù)的解析式.

)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線及點(diǎn).

1)證明直線過(guò)某定點(diǎn),并求該定點(diǎn)的坐標(biāo);

(2)當(dāng)點(diǎn)到直線的距離最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°.過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,2),B(﹣3,﹣1),若圓x2+y2=r2(r>0)上恰有兩點(diǎn)M,N,使得△MAB和△NAB的面積均為5,則r的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案