【題目】選修4-4:坐標系與參數(shù)方程

已知在極坐標系和直角坐標系中,極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù).

1)求曲線的直角坐標方程和曲線的普通方程;

(2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點間的距離.

【答案】(1) (2)

【解析】試題分析:(1)曲線的極坐標方程為,,利用,即可化為直角坐標方程,曲線的參數(shù)方程為為參數(shù),消去即可化為普通方程;(2由(1)知曲線和曲線都是圓,將兩圓方程相減即可得兩圓公共弦所在的直線方程,即可求出兩交點間的距離.

試題解析:(1

,

代入上式整理得曲線的直角坐標方程為,

為參數(shù))消去參數(shù)得曲線的普通方程為.

2)由(1)知曲線是圓心為1,0),半徑的圓,

曲線是圓心為0,1),半徑=2的圓,

∴兩圓相交,

兩圓方程相減得公共弦所在的直線方程為,

∴圓心到公共弦所在直線的距離為=,

∴公共弦長為=.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得的線性回歸方程為x.若某同學根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為ybxa′,則以下結(jié)論正確的是(  )

A. >b′,>a B. >b′,<a

C. <b′,>a D. <b′,<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司研制出了一種新產(chǎn)品,試制了一批樣品分別在國內(nèi)和國外上市銷售,并且價格根據(jù)銷售情況不斷進行調(diào)整,結(jié)果40天內(nèi)全部銷完.公司對銷售及銷售利潤進行了調(diào)研,結(jié)果如圖所示,其中圖①(一條折線)、圖②(一條拋物線段)分別是國外和國內(nèi)市場的日銷售量與上市時間的關(guān)系,圖③是每件樣品的銷售利潤與上市時間的關(guān)系.

(1)分別寫出國外市場的日銷售量f(t)與上市時間t的關(guān)系及國內(nèi)市場的日銷售量g(t)與上市時間t的關(guān)系;

(2)國外和國內(nèi)的日銷售利潤之和有沒有可能恰好等于6 300萬元?若有,請說明是上市后的第幾天;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,如果 ,使為常數(shù))成立,則稱函數(shù)上的均值為.給出下列四個函數(shù);;.則其中滿足在其定義域上均值為2的函數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是圓內(nèi)的一個定點,點是圓上的任意一點,線段的垂直平分線和半徑相交于點,當點在圓上運動時,點的軌跡為曲線.

(1)求曲線的方程;

(2)點, ,直線軸交于點,直線軸交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)上購物逐步走進大學生活,某大學學生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.

(1)求這4個人中恰有2人去淘寶網(wǎng)購物的概率;

(2)求這4個人中去淘寶網(wǎng)購物的人數(shù)大于去京東商城購物的人數(shù)的概率:

(3)用X,Y分別表示這4個人中去淘寶網(wǎng)購物的人數(shù)和去京東商城購物的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象上一點處的切線方程為.

(1)求的值;

(2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中

為自然對數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)|ax2|.

(1)a2時,解不等式f(x)>x1;

(2)若關(guān)于x的不等式f(x)f(x)< 有實數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·洛陽市統(tǒng)考)已知數(shù)列{an}的前n項和為Sn,an≠0,a11,且2anan14Sn3(nN*)

(1)a2的值并證明:an2an2

(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案