如圖,已知PA,PB是⊙o的切線,A、B分別為切點,C為⊙o上不與A,B重合的另一點,若∠ACB=120°,則∠APB=________度.

答案:60°
解析:

連結AO,BO,由所對的弧為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知PA⊥α,PB⊥β,垂足分別是A,B,且α∩β=l,.
(Ⅰ)求證:l⊥平面PAB;
(Ⅱ)若PA=PB=
2
2
AB
,判斷平面α與平面β的位置關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知PA、PB是圓O的切線,A、B分別為切點,C為圓O上不與A、B重合的另一點,若∠ACB=120°,則∠APB=
 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三第五次階段考試文科數(shù)學試卷(解析版) 題型:填空題

如圖,已知PA、PB是圓O的切線,A、B分別為切點,C為圓O上不與A、B重合的另一點,若∠ACB = 120°,則∠APB =                

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省高三上學期期中考試文科數(shù)學卷 題型:填空題

如圖,已知PA、PB是圓O的切線,A、B分別為切點,C為圓O上不與A、B重合的另一點,若∠ACB = 120°,則∠APB =                

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知PA⊥α,PB⊥β,垂足分別是A,B,且α∩β=l,.
(Ⅰ)求證:l⊥平面PAB;
(Ⅱ)若數(shù)學公式,判斷平面α與平面β的位置關系,并給出證明.

查看答案和解析>>

同步練習冊答案