(8分)如圖,四棱錐底面是正方形且四個頂點在球的同一個大圓(球面被過球心的平面截得的圓叫做大圓)上,點在球面上且,且已知
(1)求球的體積;
(2)設(shè)中點,求異面直線所成角的余弦值。
(1)球的體積
(2)。    
解:(1)設(shè)球的半徑為,則
所以             
,,所以,——3
所以球的體積   
(2)取的中點,連結(jié),則
所以為異面直線所成角。
由已知,

所以。       
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在三棱錐中,底面,
,分別在棱上,且  
(1)求證:平面;
(2)當的中點時,求與平面所成的角的正弦值;
(3)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點,PD⊥平面ABCD,且PD=AD=,CD=1
(1)證明:MN∥平面PCD;
(2)證明:MC⊥BD;
(3)求二面角A—PB—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,三棱錐ABPC中,APPC,ACBCMAB中點,DPB中點,且△PMB為正三角形。
(Ⅰ)求證:DM//平面APC;
(Ⅱ)求證:BC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱錐DBCM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,底面是菱形,且,的中點.
(Ⅰ)證明:平面;
(Ⅱ)側(cè)棱上是否存在點,使得平面?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分8分)
在長方體中,底面是邊長為2的正方形,
(Ⅰ)指出二面角的平面角,并求出它的正切值;
(Ⅱ)求所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在正方體上任意選擇4個頂點,它們可能是如下幾何體的4個頂點,請寫出所有符合題意的幾何體的序號                 .
①矩形     ②不是矩形的平行四邊形
③有三個面為等腰直角三角形,另一個面為等邊三角形的四面體
④每個面都是等邊三角形的四面體
⑤每個面都是直角三角形的四面體

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線l,m與平面,,滿足,,,那么必有
A.B.
C.D.

查看答案和解析>>

同步練習冊答案