【題目】在如圖所示的多面體中, 平面 , , , , 的中點(diǎn).

(Ⅰ)求證:
(Ⅱ)求平面 與平面 所成銳二面角的余弦值.

【答案】解:(Ⅰ)∵ 平面 , 平面 , 平面
, .又 ,
, , 兩兩垂直.
以點(diǎn) 為坐標(biāo)原點(diǎn), , , 分別為 軸,
建立空間直角坐標(biāo)系,
由已知得, , , , ,

,∴
(Ⅱ)由已知得 是平面 的法向量,
設(shè)平面 的法向量為 ,
,
,即 ,令 ,得 ,
設(shè)平面 與平面 所成銳二面角的大小為

∴平面 與平面 所成銳二面角的余弦值為
【解析】(1)根據(jù)題意即可證明EB、EF、EA兩兩垂直以點(diǎn)E為坐標(biāo)原點(diǎn)EB、EF、EA分別為x、y、z軸,建立空間直角坐標(biāo)系用坐標(biāo)表示點(diǎn)與向量進(jìn)而得到即可得證 B D ⊥ E G 。(2)根據(jù)題意建立空間直角坐標(biāo)系,求出各個(gè)點(diǎn)的坐標(biāo)進(jìn)而求出各個(gè)向量的坐標(biāo),設(shè)出平面DEF和平面DEG的法向量,由向量垂直的坐標(biāo)運(yùn)算公式可求出法向量,再利用向量的數(shù)量積運(yùn)算公式求出余弦值即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P為△ABC內(nèi)一點(diǎn),且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,直線 的斜率之積為 .
(Ⅰ)求頂點(diǎn) 的軌跡方程
(Ⅱ)設(shè)動(dòng)直線 ,點(diǎn) 關(guān)于直線 的對(duì)稱點(diǎn)為 ,且 點(diǎn)在曲線 上,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知 ).
(1)若 的解集為 ,求 的值;
(2)若對(duì)任意 ,不等式 恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取 名同學(xué)(男 人,女 人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進(jìn)行解答.選題情況如下表(單位:人):

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

附表及公式:

(1)能否據(jù)此判斷有 的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的 名女生中,任意抽取兩人,對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩位女生被抽到的人數(shù)為 ,求 的分布列和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)解不等式
(Ⅱ)若不等式 的解集為 ,且滿足 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(Ⅰ)當(dāng) 時(shí),求函數(shù) 處的切線方程;
(Ⅱ)試判斷函數(shù) 零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 , ,若橢圓上存在點(diǎn) 使 成立,則該橢圓的離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 的平均數(shù)為3,標(biāo)準(zhǔn)差為4,且 , ,則新數(shù)據(jù) 的平均數(shù)和標(biāo)準(zhǔn)差分別為( )
A.-9 12
B.-9 36
C.3 36
D.-3 12

查看答案和解析>>

同步練習(xí)冊(cè)答案