【題目】已知,若方程有2個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).

【答案】

【解析】

由方程的解與函數(shù)圖象的交點(diǎn)個(gè)數(shù)的關(guān)系可得有2個(gè)不同的實(shí)根等價(jià)于的圖象與直線的交點(diǎn)個(gè)數(shù)為2,由函數(shù)圖象的性質(zhì)及利用導(dǎo)數(shù)求切線方程可設(shè)過(guò)原點(diǎn)的直線與相切與點(diǎn),由,則此切線方程為,又此直線過(guò)原點(diǎn),則求得,即切線方程為再結(jié)合圖象可得實(shí)數(shù)的取值范圍是,得解.

解:由,

可得:的圖象關(guān)于直線對(duì)稱,

有2個(gè)不同的實(shí)根等價(jià)于的圖象與直線的交點(diǎn)個(gè)數(shù)為2,

的圖象與直線的位置關(guān)系如圖所示,

設(shè)過(guò)原點(diǎn)的直線與相切與點(diǎn),

,

則此切線方程為:,

又此直線過(guò)原點(diǎn),

則求得,

即切線方程為:

由圖可知:當(dāng)的圖象與直線的交點(diǎn)個(gè)數(shù)為2時(shí),

實(shí)數(shù)的取值范圍是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,若的公共點(diǎn)為,且是曲線的中心,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,橢圓與直線相切于點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于、兩點(diǎn)( 不是長(zhǎng)軸端點(diǎn)),且以為直徑的圓過(guò)橢圓軸正半軸上的頂點(diǎn),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C ,過(guò)點(diǎn)的直線l的參數(shù)方程為: (t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).

(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)|PM |,|MN|,|PN|成等比數(shù)列,求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地有一企業(yè)2007年建廠并開(kāi)始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類(lèi)推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(hào)(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬(wàn)元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且在軸上截得弦的長(zhǎng)為4。

(1)求動(dòng)圓圓心的軌跡的方程;

(2)設(shè),過(guò)點(diǎn)斜率為的直線交軌跡兩點(diǎn), 的延長(zhǎng)線交軌跡兩點(diǎn)。

①若的面積為3,求的值。

②記直線的斜率為,證明: 為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面平面, 的中點(diǎn).

1)求證: 平面;

2)若, , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免“書(shū)寫(xiě)危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽(tīng)寫(xiě)測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)全部在之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;

(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初一年級(jí)全年級(jí)共有名學(xué)生,為了拓展學(xué)生的知識(shí)面,在放寒假時(shí)要求學(xué)生在假期期間進(jìn)行廣泛的閱讀,開(kāi)學(xué)后老師對(duì)全年級(jí)學(xué)生的閱讀量進(jìn)行了問(wèn)卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計(jì)人員記得根據(jù)頻率直方圖計(jì)算出學(xué)生的平均閱讀量為萬(wàn)字.根據(jù)閱讀量分組按分層抽樣的方法從全年級(jí)人中抽出人來(lái)作進(jìn)一步調(diào)查.

(1)在閱讀量為萬(wàn)到萬(wàn)字的同學(xué)中有人的成績(jī)優(yōu)秀,在閱量為萬(wàn)到萬(wàn)字的同學(xué)中有人成績(jī)不優(yōu)秀,請(qǐng)完成下面的列聯(lián)表,并判斷在“犯錯(cuò)誤概率不超過(guò)”的前提下,能否認(rèn)為“學(xué)生成績(jī)優(yōu)秀與閱讀量有相關(guān)關(guān)系”;

閱讀量為萬(wàn)到萬(wàn)人數(shù)

閱讀量為萬(wàn)到萬(wàn)人數(shù)

合計(jì)

成績(jī)優(yōu)秀的人數(shù)

成績(jī)不優(yōu)秀的人數(shù)

合計(jì)

(2)在抽出的同學(xué)中,1)求抽到被污染部分的同學(xué)人數(shù);2)從閱讀量在萬(wàn)到萬(wàn)字及萬(wàn)到萬(wàn)字的同學(xué)中選出人寫(xiě)出閱讀的心得體會(huì).求這人中恰有人來(lái)自閱讀量是萬(wàn)到萬(wàn)的概率.

參考公式: ,其中.

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案