(本小題滿分12分)

為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有1000名學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

(1)求頻率分布表中的值,并補全頻數(shù)條形圖;

(2)根據(jù)頻數(shù)條形圖估計該樣本的中位數(shù)是多少?

(3)若成績在65.5~85.5分的學生為三等獎,問該校獲得三等獎的學生約為多少人?

頻率分布表

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

0.20

80.5~90.5

16

90.5~100.5

合計

1

解:(1)=8,=0.24. ………………2分

60.5~70.5分的學生頻數(shù)為8,90.5~100.5分的學生頻數(shù)為12,補全頻數(shù)條形圖.…4分

(2)因為前三組頻數(shù)之和4+8+10=22,樣本容量為50,所以樣本的中位數(shù)在80.5~90.5分這組,

得:(分)………………8分

(3)成績在65.5~70.5分的學生頻率為,成績在70.5~80.5分的學生頻率

為0.2,成績在80.5~85.5分的學生頻率為,所以成績在65.5~85.5分的

學生頻率為0.08+0.2+0.16=0.44,由于有1000名學生參加了這次競賽,所以該校獲得三等獎的學生約為0.44´1000=440(人).    ………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案