精英家教網 > 高中數學 > 題目詳情

某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:

單價x(元)
8
8.2
8.4
8.6
8.8
9
銷量y (件 )
90
84
83
80
75
68
(I)求銷量與單價間的回歸直線方程;
(II)預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?

(1)
(2)當單價定為8.25元時,工廠可獲得最大利潤

解析試題分析:解:(1)設,則有如下數據:

m
-5
-3
-1
1
3
5
n
11
5
4
1
-4
-11
用最小二乘法求的回歸方程:
     

        
∴m、n的回歸方程為
代入回歸方程得
,即

(2)設工廠獲得的利L元,可得

當且僅當x=8.25,L去取得最大值
故當單價定為8.25元時,工廠可獲得最大利潤。
考點:線性回歸方程
點評:主要是考查了線性回歸方程的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

南昌市為增強市民的交通安全意識,面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組、第2組、第3組、第4組、第5組,得到的頻率分布直方圖如圖所示:

(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場協(xié)助交警維持交通,應從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中在第四或第五組的志愿者中,隨機抽取3名志愿者到學校宣講交通安全知識,求到學校宣講交通知識的資源者中恰好1名市第五組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關,現采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數分為5組:分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(I)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成列聯表,并判斷是否有90%的把握認為“生產能手與工人所在的年齡組有關”?


0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
 

25周歲以上組                          25周歲以下組

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對400個某種型號的電子元件進行壽命追蹤調查,其頻率分布表如下表:

壽命(h)
頻率
500600
0.10
600700
0.15
700800
0.40
800900
0.20
9001000
0.15
合計
1

(I)在下圖中補齊頻率分布直方圖;
(II)估計元件壽命在500800h以內的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:

零件的個數x(個)
2
3
4
5
加工的時間y(小時)
2.5
3
4
4.5
(1)回歸分析,并求出y關于x的線性回歸方程=bx+a;
(2)試預測加工10個零件需要多少時間?

n-2
1
2
3
4
小概率0.05
0.997
0.950
0.878
0.811
小概率0.01
1.000
0.990
0.959
0.917

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為考查某種藥物預防疾病的效果,進行動物試驗,得到如下丟失數據的列聯表:
藥物效果試驗列聯表

 
患病
未患病
總計
沒服用藥
20
30
50
服用藥
x
y
50
總計
M
N
100
設從沒服用藥的動物中任取兩只,未患病數為X;從服用藥物的動物中任取兩只,未患病數為Y,工作人員曾計算過P(X=0)= P(Y=0).
(1)求出列聯表中數據x,y,M,N的值;
(2)能夠有多大的把握認為藥物有效?
(3)現在從該100頭動物中,采用隨機抽樣方法每次抽取1頭,抽后返回,抽取5次, 若每次抽取的結果是相互獨立的,記被抽取的5頭中為服了藥還患病的數量為.,求的期望E()和方差D().
參考公式:(其中
P(K2≥k)
0.25
0.15
0.10
0.05
0.010
0.005
k
1.323
2.072
2.706
3.845
6.635
7.879

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某糖廠為了了解一條自動生產線上袋裝白糖的重量,隨機抽取了100袋,并稱出每袋白糖的重量(單位:g),得到如下頻率分布表。

分組
頻數
頻率
[485.5,490.5)
10

[490.5,495.5)


[495.5,500.5)


[500.5,505.5]
10
 
合計
100
 
表中數據,,成等差數列。
(I)將有關數據分別填入所給的頻率。分布表的所有空格內,并畫出頻率分布直方圖。
(II)在這100包白糖的重量中,估計其中位數。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調查得到了如下的列聯表:

 
患心肺疾病
不患心肺疾病
合計

 
5
 

10
 
 
合計
 
 
50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
(Ⅰ)請將上面的列聯表補充完整;
(Ⅱ)是否有的把握認為患心肺疾病與性別有關?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃。F在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數為,求的分布列,數學期望以及方差.
下面的臨界值表供參考: 

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式 其中

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數據,數據統(tǒng)計如下:

組別
PM2.5(微克/立方米)
頻數(天)
頻率
第一組
(0,15]
4
0.1
第二組
(15,30]
12
0.3
第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第三組
(60,75]
4
0.1
第四組
(75,90)
4
0.1
(Ⅰ)寫出該樣本的眾數和中位數(不必寫出計算過程);
(Ⅱ)求該樣本的平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由;
(Ⅲ)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質量標準的天數為,求的分布列及數學期望

查看答案和解析>>

同步練習冊答案