【題目】已知函數.
(1)當時,求曲線在點處的切線的斜率;
(2)討論函數的單調性;
(3)當函數有極值時,若對, 恒成立,求實數的取值范圍.
【答案】(1) (2)見解析(3)
【解析】試題分析:(1)求出函數的導數,計算f′(1)的值即可;
(2)求出函數的導數,討論a的范圍,求出函數的單調區(qū)間即可;
(3)問題轉化為, 設h(x)=x-1-lnx,根據函數單調性求出h(x)的最小值,從而求出a的范圍即可.
試題解析:
(1)當時, ,∴.
(2) ,
令,
①當時, , ,即,函數在上單調遞增.
②當時, ,令,則,
在和上, ,函數單調遞增;
在上, 函數單調遞減.
(3)由(1)可知,當時,函數在上有極值.
可化為,
∵,∴,
設,則,
當時, ,函數單調遞減,當時, ,函數單調遞增,
∴當, ,∴,
所以.
又∵,∴,即的取值范圍是.
科目:高中數學 來源: 題型:
【題目】已知△ABC中,頂點A(3,7),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.
(1)求點A關于直線CD的對稱點的坐標;
(2)求頂點B、C的坐標;
(3)過A作直線,使B,C兩點到的距離相等,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數據作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中 ,
(Ⅰ)根據散點圖判斷,y=a+bx與y=c+d哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(Ⅰ)的判斷結果及表中數據,建立y關于x的回歸方程;
(Ⅲ)已知這種產品的年利潤z與x、y的關系為z=0.2y-x.根據(Ⅱ)的結果回答下列問題:
(ⅰ)年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
(ⅱ)年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數據,,……,,其回歸線的斜率和截距的最小二乘估計分別為:
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張經營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.
(1)把y表示為x的函數;
(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數;
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且為鈍角,若,.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com