【題目】已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量 =(﹣1, ), =(cosA,sinA).若 ,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A. ,
B. ,
C.
D. ,

【答案】A
【解析】解:∵根據(jù)題意, ,可得 =0,
即﹣cosA+ sinA=0,可得:2sin(A﹣ )=0,
∵A∈(0,π),A﹣ ∈(﹣ ),
∴解得:A= ,
又∵acosB+bcosA=csinC,
∴由正弦定理可得,sinAcosB+sinBcosA=sin2C,
∴sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,
∵sinC≠0,可得:sinC=1,又C∈(0,π),
∴C=
∴B=
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,焦點(diǎn)

(1)當(dāng)時,若是橢圓第一象限內(nèi)的一點(diǎn),,求點(diǎn)的坐標(biāo);

(2)當(dāng)橢圓焦點(diǎn)在軸上且焦距2時,若直線與橢圓相交于兩點(diǎn),且證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓 軸的正半軸交于點(diǎn),以為圓心的圓 )與圓交于, 兩點(diǎn).

(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于, ,當(dāng)直線長最小時,求直線的方程;

(2)設(shè)是圓上異于, 的任意一點(diǎn),直線、分別與軸交于點(diǎn),問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人最寶貴的是生命,然而有時候最不善待生命的恰恰是人類自己,在交通運(yùn)輸業(yè)發(fā)展迅猛的今天,由于不懂得交通法規(guī),以及人們的交通安全觀念和自我保護(hù)意識還沒有跟上時代的步伐,那些在交通復(fù)雜多變的地方而引發(fā)的交通事故也是接連不斷.為了警示市民,某市對近三年內(nèi)某多發(fā)事故路口在每天時間段內(nèi)發(fā)生的480次事故中隨機(jī)抽取100次進(jìn)行調(diào)研,數(shù)據(jù)按事發(fā)時間分成8組:(單位:小時),制成了如圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這480次交通事故發(fā)生在時間段的次數(shù);

(Ⅱ)在抽出的100次交通事故中按時間段采用分層抽樣的方法抽取10次進(jìn)行個案分析,再從這10次交通事故中選取3次交通事故作重點(diǎn)專題研究.記這3次交通事故中發(fā)生時間在的次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)記集合 , ,判斷的關(guān)系;

(3)當(dāng) (m>0,n>0)時,若函數(shù)f(x)的值域?yàn)閇2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)求的定義域及其零點(diǎn);

(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;

(3)設(shè),當(dāng)時,若對任意,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,的中點(diǎn).

(Ⅰ)求證:平面

(II)在線段上是否存在點(diǎn),使三棱錐的體積為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大;
(2)若c=2,則當(dāng)a,b分別取何值時,△ABC的面積取得最大值,并求出其最大值.

查看答案和解析>>

同步練習(xí)冊答案