O為坐標原點,F為拋物線C:y2=4x的焦點,P為C上一點,若|PF|=4,則△POF的面積為(  )
A.2 B.2C.2D.4
C
設P(xP,yP)(yP>0)由拋物線定義知,xP+=4,
∴xP=3,yP==2,
因此S△POF=×2×=2.故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知點A(-1,1),P是動點,且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點P的軌跡C的方程;
(2)若Q是軌跡C上異于點P的一個點,且=λ,直線OP與QA交于點M,問:是否存在點P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為(  )
A.y2=4xB.x2=4y
C.y2=8xD.x2=8y

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點.若|AF|=3,則|BF|=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=2px(p>0),過其焦點且斜率為1的直線交拋物線于A、B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為(  )
(A)x=1   (B)x=-1
(C)x=2   (D)x=-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將兩個頂點在拋物線y2=2px(p>0)上,另一個頂點是此拋物線焦點的正三角形個數(shù)記為n,則(  )
A.n=0B.n=1C.n=2D.n≥3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

平面上有三個點A(-2,y),B(0,),C(x,y),若,則動點C的軌跡方程是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線Cy2=2px(p>0)的焦點為F,拋物線C與直線l1y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2l1垂直,且與拋物線交于不同的兩點A、B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點.若|AF|=3,
則|BF|=________.

查看答案和解析>>

同步練習冊答案