如圖,已知三棱錐中,,,為中點(diǎn),為 中點(diǎn),且為正三角形。
(Ⅰ)求證://平面;
(Ⅱ)求證:平面⊥平面;
(III)若,,求三棱錐的體積.
(Ⅰ)、(Ⅱ)詳見(jiàn)解析(III).
解析試題分析:(Ⅰ)利用中位線性質(zhì)得到線線平行,根據(jù)線面平行的判定判定直線與平面平行;(Ⅱ)利用正三角形中點(diǎn)得到線線垂直,根據(jù)平行推得線線垂直,利用直線與平面垂直判定面面垂直;(Ⅲ)利用三棱錐的體積公式計(jì)算體積.
試題解析:(Ⅰ)∵M(jìn)為AB中點(diǎn),D為PB中點(diǎn),
∴MD//AP, 又∴MD平面ABC
∴DM//平面APC. 3分
(Ⅱ)∵△PMB為正三角形,且D為PB中點(diǎn).∴MD⊥PB.
又由(1)∴知MD//AP, ∴AP⊥PB.
又已知AP⊥PC ∴AP⊥平面PBC,
∴AP⊥BC, 又∵AC⊥BC. 7分
∴BC⊥平面APC, ∴平面ABC⊥平面PAC,
(Ⅲ)∵ AB=20
∴ MB=10 ∴PB=10
又 BC=4,.
∴.
又MD.
∴VD-BCM = VM-BCD =. 12分
考點(diǎn):直線與平面平行的判定;平面與平面垂直的判定,三棱錐體積計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知半徑為的球內(nèi)有一個(gè)內(nèi)接正方體(即正方體的頂點(diǎn)都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐中,是邊長(zhǎng)為的正三角形,平面⊥平面,,、分別為、的中點(diǎn).
(Ⅰ)證明:⊥;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正三棱臺(tái)中,分別是上、下底面的中心.已知,.
(1)求正三棱臺(tái)的體積;
(2)求正三棱臺(tái)的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐中,底面為平行四邊形,側(cè)面底面,為 的中點(diǎn),已知,
(Ⅰ)求證:;
(Ⅱ)在上求一點(diǎn),使平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖,在直三棱柱中,,.棱上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF =" a" (a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com