【題目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)當(dāng)a=1時(shí),求A∩B和A∪B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:a=1時(shí),A={x|3≤x≤7},B={x|2<x<5},

故A∩B={x|3≤x<5},A∪B={x|2<x≤7}


(2)解:∵A={x|3≤x≤7},B={x|2a<x<a+4}.A∩B=

∴當(dāng)B=時(shí),2a≥a+4,則a≥4;

當(dāng)B≠時(shí),2a<a+4,則a<4,由A∩B=,

解得a≤﹣1或 ,

綜上可知,a的取值范圍是


【解析】(1)借助數(shù)軸;(2)根據(jù)B=和B≠兩種情況借助數(shù)軸列出不等式.
【考點(diǎn)精析】掌握集合的交集運(yùn)算是解答本題的根本,需要知道交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域?yàn)镽;命題q:3x﹣9x<a對(duì)一切實(shí)數(shù)x恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是檢測(cè)某種濃度的農(nóng)藥隨時(shí)間x(秒)滲入某種水果表皮深度y(微米)的一組結(jié)果.

時(shí)間x(秒)

5

10

15

20

30

深度y(微米)

6

10

10

13

16


(1)在規(guī)定的坐標(biāo)系中,畫出 x,y 的散點(diǎn)圖;
(2)求y與x之間的回歸方程,并預(yù)測(cè)40秒時(shí)的深度(回歸方程精確到小數(shù)點(diǎn)后兩位;預(yù)測(cè)結(jié)果精確到整數(shù)). 回歸方程: =bx+a,其中 = ,a= ﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)請(qǐng)寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=x|x﹣a|.
(1)當(dāng)a=0時(shí),寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=1時(shí),討論函數(shù)y=f(x)的奇偶性;
(3)設(shè)a≠0,函數(shù)y=f(x)在(m,n)上既有最大值又有最小值,請(qǐng)分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為 ,若S3=a4+2,且a1 , a3 , a13成等比數(shù)列
(1)求{an}的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|< )的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)F(x)=3[f(x﹣ )]2+mf(x﹣ )+2在區(qū)間[0, ]上有四個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

查看答案和解析>>

同步練習(xí)冊(cè)答案