【題目】已知雙曲線的兩個焦點為、,P為該雙曲線上一點,滿足,P到坐標原點O的距離為d,且,則________.

【答案】49

【解析】

求得雙曲線的b,c,設(shè)P為右支上一點,|PF1|m|PF2|n,運用雙曲線的定義,結(jié)合條件,由兩點的距離公式,解不等式可得a的正整數(shù)解.

雙曲線1b2,c2a2+4,

設(shè)P為右支上一點,|PF1|m,|PF2|n

由雙曲線的定義可得mn2a,

由題意可得4c2mn,

又由三角形中線與邊的關(guān)系可得:2 m2+2n2(2c)2+(2d)2,

m2+n22c2+2d2,

可得(mn2+2mn4a2+8c22c2+2d2

d2∈(25,81),

255a2+1281,

a為正整數(shù),可得a249,

故答案為:49

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,E,F分別是BCPC的中點.

(I)證明:AEPD;

(II)設(shè)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線是焦點在軸上的橢圓,兩個焦點分別是是,,且,是曲線上的任意一點,且點到兩個焦點距離之和為4.

1)求的標準方程;

2)設(shè)的左頂點為,若直線與曲線交于兩點,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況,如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是(

A.他們健身后,體重在區(qū)間內(nèi)的人增加了2

B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒有改變

C.他們健身后,20人的平均體重大約減少了8 kg

D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:對于任意的正整數(shù),,且,則稱該數(shù)列為“跳級數(shù)列”.

1)若數(shù)列為“跳級數(shù)列”,且,求的值;

2)若數(shù)列為“跳級數(shù)列”,則對于任意一個大于的質(zhì)數(shù),在數(shù)列中總有一項是的倍數(shù);

3)若為奇質(zhì)數(shù),則存在一個“跳級數(shù)列”,使得數(shù)列中每一項都不是的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C: ,點.

1)求點P與拋物線C的焦點F的距離;

2)設(shè)斜率為l的直線l與拋物線C交于A,B兩點若△PAB的面積為,求直線l的方程;

3)是否存在定圓M: ,使得過曲線C上任意一點Q作圓M的兩條切線,與曲線C交于另外兩點A,B時,總有直線AB也與圓M相切?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準備在今年8月份的小升初錄取中在某重點中學(xué)實行分數(shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進行了統(tǒng)計,得到如下的2×2列聯(lián)表.

贊同錄取辦法人數(shù)

不贊同錄取辦法人數(shù)

合計

近三年家里沒有小升初學(xué)生

180

40

220

近三年家里有小升初學(xué)生

140

80

220

合計

320

120

440

1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);

2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.

附:,其中.

P()

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標系中,圓的方程為,為圓上三個定點,某同學(xué)從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到,,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,處的概率分別為,

1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;

2)擲骰子次時,若以軸非負半軸為始邊,以射線,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;

3)記,,其中.證明:數(shù)列是等比數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4,坐標系與參數(shù)方程】

在直角坐標系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為

)求直線的普通方程與曲線C的直角坐標方程;

)若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

查看答案和解析>>

同步練習(xí)冊答案