已知函數(shù),)的圖象恒過定點,橢圓
)的左,右焦點分別為,,直線經(jīng)過點且與⊙相切.
(1)求直線的方程;
(2)若直線經(jīng)過點并與橢圓軸上方的交點為,且,求內切圓的方程.
(1),或   (2)

試題分析:(Ⅰ)易知定點,⊙的圓心為,半徑
①當軸時,的方程為,易知和⊙相切.
②當軸不垂直時,設的方程為,即,
圓心的距離為. 由和⊙相切,得,解得.         
于是的方程為.綜上,得直線的方程為,或.      
(Ⅱ)設,則由,得
又由直線的斜率為,得,.   
于是
,是等腰三角形,點是橢圓的上頂點.易知.                                        
于是內切圓的圓心在線段上.設,內切圓半徑為.則
由點到直線的距離,解得.                                                          
內切圓的方程為
點評:本題考查橢圓的標準方程,考查橢圓的定義,考查直線與橢圓的位置關系,考查韋達定理的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的漸近線與圓相切,則雙曲線的離心率為(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的左右焦點分別是,設是雙曲線右支上一點,上投影的大小恰好為,且它們的夾角為,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的右焦點為,右準線為,離心率為,點在橢圓上,以為圓心,為半徑的圓與的兩個公共點是

(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點在同一條直線上,且原點到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率等于,點在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設橢圓的左右頂點分別為,,過點的動直線與橢圓相交于,兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C以拋物線的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若分別為橢圓的左右焦點,求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線Cl:y2= 2x的焦點為F1,拋物線C2:y=2x2的焦點為F2,則過F1且與F1F2垂直的直線的一般方程式為
A.2x- y-l=0B.2x+ y-1=0
C.4x-y-2 =0D.4x-3y-2 =0

查看答案和解析>>

同步練習冊答案