如圖,、為圓柱的母線,是底面圓的直徑,分別是、的中點,

(1)證明:;
(2)證明:;
(3)求四棱錐與圓柱的體積比.

(1)詳見解析; (2) 詳見解析; (3).

解析試題分析:(1)證明線面平行,可證線線平行,所以通過證明四邊形是平行四邊形可知,從而證得.(2)證明面面垂直,可證線面垂直,所以通過證明,而,從而證得.(3)關鍵是求四棱錐的高,通過證明找到就是棱錐的高,再分別利用圓柱和棱錐的體積公式計算.
試題解析:(1)證明:連結,.分別為的中點,∴.
,且.∴四邊形是平行四邊形,
. ∴.       4分
(2) 證明:、為圓柱的母線,所以,即,又是底面圓的直徑,所以,,所以,所以,,
所以  9分
(3)解:由題,且由(1)知.∴,∴ ,∴. 因是底面圓的直徑,得,且
,即為四棱錐的高.設圓柱高為,底半徑為,
,.      14分
考點:1、線面平行的證明,2、面面垂直的證明,3、柱體和錐體的體積計算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

正方形與梯形所在平面互相垂直,,,點在線段上且不與重合。

(Ⅰ)當點M是EC中點時,求證:BM//平面ADEF;
(Ⅱ)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求證:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結A1B與∠A1BC=60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設D是BB1的中點,求三棱錐D-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,菱形的邊長為4,.將菱形沿對角線折起,得到三棱錐,點是棱的中點,.

(1)求證:平面
(2)求證:平面平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中,,D是AC的中點.

(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知多面體的底面是邊長為的正方形,底面,,且
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點為K,在平面ABCD內過點K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 在三棱錐中,

(1)求證:平面平面;
(2)若,當三棱錐的體積最大時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:正方體的棱長為1,點分別是的中點

(1)求證: 
(2)求異面直線所成角的余弦值。

查看答案和解析>>

同步練習冊答案