已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ca/2/sl6je1.png" style="vertical-align:middle;" />,
(1)求;
(2)若,且,求實(shí)數(shù)的取值范圍.
(1);(2).
解析試題分析:(1)求函數(shù)的定義域問(wèn)題,涉及對(duì)數(shù)其真數(shù)應(yīng)大于0,分母應(yīng)不為0,二次根式的被開方數(shù)式應(yīng)大于或等于0,注意考慮問(wèn)題應(yīng)全面,不逆漏.本題函數(shù)由意義需要,接不等是組記得元函數(shù)的定義域;(2)對(duì)集合,解方程需要對(duì)進(jìn)行分類討論.在由求出的取值范圍.
試題解析:(1)由,解得或, .
(2),
當(dāng)時(shí),,
當(dāng)時(shí),,
,
或或解或,
考點(diǎn):函數(shù)的定義域,交集的概念,一元二次不等式的解法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足:對(duì)任意,都有成立,且時(shí),.
(1)求的值,并證明:當(dāng)時(shí),;
(2)判斷的單調(diào)性并加以證明;
(3)若在上遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù),如果對(duì)任意,恒有(,)成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求證:函數(shù)在上無(wú)零點(diǎn);
(3)已知函數(shù)為階縮放函數(shù),且當(dāng)時(shí),的取值范圍是,求在()上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù)當(dāng)時(shí),,且對(duì)任意的有。
(1)求證:,
(2)求證:對(duì)任意的,恒有;
(3)若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)如果函數(shù)在上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)用定義證明在上單調(diào)遞增;
(2)若是上的奇函數(shù),求的值;
(3)若的值域?yàn)镈,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:
①不是奇函數(shù);②是上的單調(diào)遞減函數(shù).
(2)設(shè)是奇函數(shù),求與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實(shí)數(shù)k的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com