【題目】已知函數(shù),在處的切線方程為.
(1)求的值
(2)當且時,求證: .
【答案】(1);(2)見解析
【解析】試題分析:先從切線方程中找到的值,構(gòu)建方程組得參數(shù)的值.(2)中的不等式較為麻煩,可以根據(jù)(1)的提示,考慮與之間的關(guān)系,然后再考慮與的關(guān)系,兩者均需通過合理變形構(gòu)建新函數(shù)并利用導數(shù)去考慮.
解析:(1),因在處的切線為,故,解得.
(2),令,則.
當時, , 在是減函數(shù);
當時, , 在是增函數(shù);
所以,故在上恒成立,也就是在上恒成立,整理得到, 恒成立.故當且僅當等號成立.所以當且時, .
令, , ,故在上總成立, 在上為增函數(shù),又,所以
當時, , 在上恒成立, ,故 ;
當時, , 在上恒成立, ,故也有;
綜上當時.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C,所對的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac= b2 .
(Ⅰ)當p= ,b=1時,求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)是否存在正整數(shù),使得在上恒成立?若存在,求出的最大值并給出推導過程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長;
(2)求cos(A﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,定直線: ,動圓過點,且與直線相切.
(Ⅰ)求動圓的圓心軌跡的方程;
(Ⅱ)過點的直線與曲線相交于, 兩點,分別過點, 作曲線的切線, ,兩條切線相交于點,求外接圓面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com