已知數(shù)列的前項和為,且,數(shù)列中,,點在直線上.
(1)求數(shù)列的通項;
(2) 設(shè),求數(shù)列的前n項和

(1);(2)

解析試題分析:(1)先由第n項與前n項關(guān)系,求出數(shù)列{}的遞推關(guān)系,再由等比數(shù)列的定義判定數(shù)列{}是等比數(shù)列,用等比數(shù)列的通項公式,求出數(shù)列{}的通項公式,由點在直線上得,=2,根據(jù)等差數(shù)列定義知數(shù)列{}是等差數(shù)列,所以再根據(jù)等比數(shù)列的通項公式,求出的通項公式;(2)由(1)知是等差數(shù)列與等比數(shù)列對應(yīng)項乘積構(gòu)成的新數(shù)列,其求和用錯位相減法.
試題解析:(1)      
                2分
.                         
     3分



   7分
(2)
        9分
因此:      10分
即:

考點:數(shù)列第n項與前n項和的關(guān)系;等差數(shù)列定義與通項公式;等比數(shù)列定義與通項公式;錯位相減法;轉(zhuǎn)化思想;運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:等差數(shù)列{}中,=14,前10項和.
(Ⅰ)求;
(Ⅱ)將{}中的第2項,第4項,…,第項按原來的順序排成一個新數(shù)列,求此數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,.
(1)求數(shù)列的通項公式;
(2)設(shè)等比數(shù)列的各項均為正數(shù),為其前項和,若,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前n項和為,且
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,求數(shù)列的通項公式及

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列的首項,公比滿足,又已知,,成等差數(shù)列;
求數(shù)列的通項;
,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負數(shù)。
(1)求此數(shù)列的公差d;
(2)當(dāng)前n項和是正數(shù)時,求n的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且滿足2Sn+n-4.
(1)求證{an}為等差數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知為等差數(shù)列,為其前項和,若,則___________.

查看答案和解析>>

同步練習(xí)冊答案