已知函數(shù)f(x)=
ax+b
x2+1
為R上的奇函數(shù),且f(1)=
1
2

(1)求a,b的值;
(2)若f(x)在[m,n]上遞增,求n-m的最大值.
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)的奇偶性和f(1)=
1
2
,建立方程即可求出a,b的值.
(2)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)遞增區(qū)間,根據(jù)[m,n]與遞增區(qū)間的關(guān)系,即可求出n-m的最大值.
解答: 解:(1)∵f(x)=
ax+b
x2+1
為R上的奇函數(shù),
∴f(0)=0,即f(0)=
b
0+1
=0
,即b=0,
此時(shí)f(x)=
ax
x2+1
,
∵f(1)=
1
2

∴f(1)=
a
2
=
1
2
,解得a=1.
(2)∵f(x)=
ax+b
x2+1
=
x
x2+1

f′(x)=
1-x2
(x2+1)2
,由f′(x)≥0
解得x2≤1,
即-1≤x≤1,即函數(shù)在[-1,1]上單調(diào)遞增,
若f(x)在[m,n]上遞增,
∴[m,n]⊆[-1,1],
即當(dāng)m=-1,n=1時(shí),n-m取得最大值,為1-(-1)=1+1=2.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用以及函數(shù)單調(diào)性的應(yīng)用,利用導(dǎo)數(shù)是解決函數(shù)單調(diào)性的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=1-i(i是虛數(shù)單位),則
2
z
+z2等于( 。
A、-1-iB、-1+i
C、1-iD、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a2=b(b+c),并且a=
3
b,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6本不同的書(shū),按照以下要求處理,各有幾種分法?
(1)分成4堆,一堆3本,其余各一本;
(2)分給甲、乙、丙三人,每人至少各一本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+2x-3=0,直線(xiàn)l1與圓C相交于不同的A、B兩點(diǎn),點(diǎn)M(0,1)是線(xiàn)段AB的中點(diǎn).
(1)求直線(xiàn)l1的方程;
(2)是否存在與直線(xiàn)l1平行的直線(xiàn)l2,使得l2與圓C相交于不同的兩點(diǎn)E、F(l2不經(jīng)過(guò)圓心C),且△CEF的面積S最大?若存在,求出l2的方程及對(duì)應(yīng)的△CEF的面積S.若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(2x+
π
4
)+B(A>0)的最大值為2,最小值為0.
(1)求f(
24
)的值;
(2)將函數(shù)y=f(x)圖象向右平移
π
4
個(gè)單位后,再將圖象上所有點(diǎn)的縱坐標(biāo)擴(kuò)大到原來(lái)的
2
倍,橫坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求方程g(x)=1的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2-2x-8
的定義域?yàn)锳,函數(shù)g(x)=lg(-x2+2ax+1-a2)的定義域?yàn)锽,且A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,P(x0,y0)是橢圓C:
x2
6
+
y2
2
=1上任意一點(diǎn),F(xiàn)是橢圓C的左焦點(diǎn),直線(xiàn)l的方程為x0x+3y0y-6=0.
(1)求證:直線(xiàn)l與橢圓C有唯一公共點(diǎn);
(2)設(shè)點(diǎn)Q與點(diǎn)F關(guān)于直線(xiàn)l對(duì)稱(chēng),當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),判斷直線(xiàn)PQ是否過(guò)定點(diǎn),若直線(xiàn)PQ過(guò)定點(diǎn),求出此定點(diǎn)的坐標(biāo);若直線(xiàn)PQ不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x+
π
3
)+cos2
π
2
+x
).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,且f(
c
2
)=-
1
4
,邊c=2,∠C為銳角,△ABC的內(nèi)切圓半徑為
3
3
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案