精英家教網(wǎng) > 高中數(shù)學(xué) > 題目詳情
如圖,在四棱錐P-ABCD中,底面是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=2
2
AD,若E、F分別為PC、BD的中點.
(Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.
分析:對于(Ⅰ),要證EF∥平面PAD,只需證明EF平行于平面PAD內(nèi)的一條直線即可,而E、F分別為PC、BD的中點,所以連接AC,EF為中位線,從而得證;
對于(Ⅱ)要證明EF⊥平面PDC,由第一問的結(jié)論,EF∥PA,只需證PA⊥平面PDC即可,已知PA=PD=2
2
AD,可得PA⊥PD,只需再證明PA⊥CD,而這需要再證明CD⊥平面PAD,
由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性質(zhì)可以證明,從而得證.解答:證明:(Ⅰ)連接AC,則F是AC的中點,在△CPA中,EF∥PA(3分)
且PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD(6分)
(Ⅱ)因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA(9分)
又PA=PD=2
2
AD,
所以△PAD是等腰直角三角形,且∠APD=π 2
,即PA⊥PD(12分)
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC(14分)點評:本題考查線面平行的判定及線面垂直的判定,而其中的轉(zhuǎn)化思想的應(yīng)用值得注意,將線面平行轉(zhuǎn)化為線線平行;證明線面垂直,轉(zhuǎn)化為線線垂直,在證明線線垂直時,往往還要通過線面垂直來進(jìn)行.
練習(xí)冊系列答案
名師面對面中考滿分特訓(xùn)方案系列答案
名師名卷單元月考期中期末系列答案
初中總復(fù)習(xí)教學(xué)指南系列答案
全程導(dǎo)航初中總復(fù)習(xí)系列答案
中考分類必備全國中考真題分類匯編系列答案
中考分類集訓(xùn)系列答案
中考復(fù)習(xí)導(dǎo)學(xué)案系列答案
中考復(fù)習(xí)信息快遞系列答案
中考復(fù)習(xí)指導(dǎo)基礎(chǔ)訓(xùn)練穩(wěn)奪高分系列答案
中考攻略系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=22
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大�。�
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號