【題目】黨的十九大報(bào)告指出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計(jì).而清潔能源的廣泛使用將為生態(tài)文明建設(shè)提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護(hù)綠水青山方面具有獨(dú)特功效.通過(guò)辦沼氣帶來(lái)的農(nóng)村“廁所革命”,對(duì)改善農(nóng)村人居環(huán)境等方面,起到立竿見(jiàn)影的效果.為了積極響應(yīng)國(guó)家推行的“廁所革命”,某農(nóng)戶準(zhǔn)備建造一個(gè)深為2米,容積為32立方米的長(zhǎng)方體沼氣池,如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,沼氣池蓋子的造價(jià)為3000元,問(wèn)怎樣設(shè)計(jì)沼氣池能使總造價(jià)最低?最低總造價(jià)是多少元?

【答案】當(dāng)沼氣池的底面是邊長(zhǎng)為4米的正方形時(shí),沼氣池的總造價(jià)最低,最低總造價(jià)是9240元.

【解析】

設(shè)沼氣池的底面長(zhǎng)為米,沼氣池的總造價(jià)為元,依題意有,利用基本不等式即可求解.

設(shè)沼氣池的底面長(zhǎng)為米,沼氣池的總造價(jià)為元,

因?yàn)檎託獬氐纳顬?米,容積為32立方米,所以底面積為16平方米,

因?yàn)榈酌骈L(zhǎng)為米,所以底面的寬為,

依題意有,

因?yàn)?/span>,由基本不等式和不等式的性質(zhì)可得

,

所以,

當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,

所以當(dāng)沼氣池的底面是邊長(zhǎng)為4米的正方形時(shí),沼氣池的總造價(jià)最低,最低總造價(jià)是9240元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線

1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn)為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是正方形, 平面, , .

(1)求證: 平面;

(2)求證: 平面;

(3)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )

A. 如果兩條平行直線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行

B. 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

C. 垂直于同一條直線的兩條直線相互垂直

D. 若兩條直線與第三條直線所成的角相等,則這兩條直線互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線

1)求直線的交點(diǎn)的坐標(biāo);

2)求過(guò)交點(diǎn),且在兩坐標(biāo)軸截距相等的直線方程;

3)若直線不能構(gòu)成三角形,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:

①點(diǎn)的軌跡關(guān)于軸對(duì)稱;②的最小值為2;

③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),

其中,所有正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)且函數(shù)圖象上點(diǎn)處的切線斜率為.

(1)試用含有的式子表示,并討論的單調(diào)性;

(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn)如果在函數(shù)圖象上存在點(diǎn)使得點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時(shí),又稱存在“中值跟隨切線”.試問(wèn):函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)參加2018年高考,根據(jù)高三年級(jí)一年來(lái)的各種大、中、小型數(shù)學(xué)模擬考試總結(jié)出來(lái)的數(shù)據(jù)顯示,甲、乙兩人能考140分以上的概率分別為,甲、乙兩人是否考140分以上相互獨(dú)立,則預(yù)估這兩個(gè)人在2018年高考中恰有一人數(shù)學(xué)考140 分以上的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案