【題目】三名工人加工同一種零件,他們?cè)谝惶熘械墓ぷ髑闆r如圖所示,其中點(diǎn)Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時(shí)間和加工的學(xué)科&網(wǎng)零件數(shù),點(diǎn)Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時(shí)間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是_________.
②記pi為第i名工人在這一天中平均每小時(shí)加工的零件數(shù),則p1,p2,p3中最大的是_________.
【答案】 Q1 p2
【解析】試題分析:作圖可得中點(diǎn)的縱坐標(biāo)比中點(diǎn)的縱坐標(biāo)大,所以Q1,Q2,Q3中最大的是,
分別作關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),比較直線(xiàn)的斜率(即為第i名工人在這一天中平均每小時(shí)加工的零件數(shù)),可得最大,所以p1,p2,p3中最大的是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線(xiàn) ( 是參數(shù))和定點(diǎn) , F1 , F2 是圓錐曲線(xiàn)的左、右焦點(diǎn).
(1)求經(jīng)過(guò)點(diǎn) F2 且垂直于直線(xiàn) AF1 的直線(xiàn) l 的參數(shù)方程;
(2)設(shè) P 為曲線(xiàn) C 上的動(dòng)點(diǎn),求 P 到直線(xiàn) l 距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC= .
(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點(diǎn),H為BC中點(diǎn),求異面直線(xiàn)AB與FH所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線(xiàn)段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點(diǎn);
(II)求二面角B-PD-A的大小;
(III)求直線(xiàn)MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線(xiàn)l與拋物線(xiàn)C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線(xiàn)分別與直線(xiàn)OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線(xiàn)C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;
(Ⅱ)求證:A為線(xiàn)段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某種信息傳輸過(guò)程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息.若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為 ( )
A.10
B.11
C.12
D.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ln(1﹣x)的定義域是( )
A.(﹣1,1)
B.[﹣1,1)
C.[﹣1,1]
D.(﹣1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(diǎn)(1,﹣ )處的切線(xiàn)斜率為﹣4,
(1)求f(x)的表達(dá)式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=﹣2.
(1)判斷f(x)的奇偶性及單調(diào)性并證明你的結(jié)論;
(2)若對(duì)任意x∈R,不等式f(ax2)﹣2f(x)<f(x)+4恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com