7.把八進制數(shù)67(8)轉(zhuǎn)化為三進制數(shù)為2001(3)

分析 首先把八進制數(shù)字轉(zhuǎn)化成十進制數(shù)字,用所給的數(shù)字最后一個數(shù)乘以8的0次方,依次向前類推,相加得到十進制數(shù)字,再用這個數(shù)字除以3,倒序取余即得三進制數(shù).

解答 解:67(8)=6×81+7×80=55(10)
55÷3=18…1
18÷3=6…0
6÷3=2…0
2÷3=0…2
故67(8)=2001(3)
故答案為:2001(3)

點評 本題考查進位制之間的轉(zhuǎn)化,本題涉及到三個進位制之間的轉(zhuǎn)化,實際上不管是什么之間的轉(zhuǎn)化,原理都是相同的,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)a,b均為正數(shù),且a+b=1,
(Ⅰ)求證:$\frac{1}{a}$+$\frac{1}$≥4;
(Ⅱ)求證:$\frac{1}{{a}^{2016}}$+$\frac{1}{^{2016}}$≥22017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.f′(x)是f(x)(x∈R)的導函數(shù),滿足f′(x)>f(x),若a>0則下列正確的是( 。
A.f(a)>eaf(0)B.f(a)<eaf(0)C.f(a)>f(0)D.f(a)<f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知Sn是等差數(shù)列{an}的前n項和,a1=2,a1+a4=a5,若Sn>32,則n的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知四棱錐P-ABCD中,底面為矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M為PC上一點,M為PC的中點.
(1)在圖中作出平面ADM與PB的交點N,并指出點N所在位置(不要求給出理由);
(2)求平面ADM將四棱錐P-ABCD分成上下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在區(qū)間(-∞,0)是減函數(shù),且圖象過點(1,0),則不等式(x-1)f(x)≤0的解集為(-∞,0]∪[1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.復(fù)數(shù)z=i(2-i)(i是虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC邊上的動點,則$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍是( 。
A.[-1,3]B.$[{-\frac{2}{3},3}]$C.$[{-\frac{2}{3},\frac{10}{3}}]$D.$[{-1,\frac{10}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)集合A={1,2,3},B={1,3,9},其中x∈A且x∉B,則x=2.

查看答案和解析>>

同步練習冊答案