設(shè)a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=是奇函數(shù).
(1)求b的取值范圍;
(2)討論函數(shù)f(x)的單調(diào)性.
(1)b的取值范圍是(0, ](2)f(x)在(-b,b)內(nèi)是減函數(shù),具有單調(diào)性.
(1)f(x)=lg (-b<x<b)是奇函數(shù)等價(jià)于:
對(duì)任意x∈(-b,b)都有
①式即為=,由此可得
,也即a2x2=4x2,此式對(duì)任意x∈(-b,b)都成立相當(dāng)于a2=4,因?yàn)閍≠2,所以a=-2,代入②式,得>0,即-<x<,此式對(duì)任意x∈(-b,b)都成立相當(dāng)于-≤-b<b≤,
所以b的取值范圍是(0, ].
(2)設(shè)任意的x1,x2∈(-b,b),且x1<x2,
由b∈(0,],得-≤-b<x1<x2<b≤,
所以0<1-2x2<1-2x1,0<1+2x1<1+2x2,
從而f(x2)-f(x1)=
因此f(x)在(-b,b)內(nèi)是減函數(shù),具有單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.a,b,c全為正數(shù) B.a,b,c全為非負(fù)實(shí)數(shù)
C.a+b+c≥0 D.a+b+c>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.a+b≥2(+1) B.a+b≤+1
C.a+b<+1 D.a+b>2(+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
設(shè)a,b,c∈R,且a>b,則 ( )
(A)ac>bc (B)<
(C)a2>b2 (D)a3>b3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com