利用斜率相等你可以得到哪些結(jié)論?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a2 |
x |
b2 |
y |
(a+b)2 |
x+y |
a |
x |
b |
y |
2 |
x |
9 |
1-2x |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:導(dǎo)練必修一數(shù)學(xué)蘇教版 蘇教版 題型:044
(創(chuàng)新題)設(shè)A、B是兩個非空集合,定義A與B的差集A-B={x|x∈A,且xB}.
(1)試舉出兩個數(shù)集,求它們的差集;
(2)差集A-B與B-A是否一定相等,說明你的理由;
(3)已知A={x|x>4},B={x||x|<6},求A-(A-B)及B-(B-A),由此你可以得到什么更一般的結(jié)論?(不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知點A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(,).
(1)若||=||,求角α的值;
(2)若·=-1,求的值.
【解析】第一問中利用向量的模相等,可以得到角α的值。
第二問中,·=-1,則化簡可知結(jié)論為
解:因為點A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(,).||=|| 所以α=.
(2)因為·=-1,即.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時,求曲線處的切線方程;
(2)當(dāng)時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程。………………4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com