如圖,BC是Rt△ABC的斜邊,過A作△ABC所在平面α垂線AP,連PB、PC,過A作AD⊥BC于D,連PD,那么圖中直角三角形的個數(shù)
 
個.
考點:直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:利用AP⊥面ABC,Rt△ABC,AD是PD在面ABC內(nèi)的射影,故由AD⊥BC可得PD⊥BC.
解答: 解:∵BC是Rt△ABC的斜邊,
A作△ABC所在平面a垂線AP,AD⊥BC于D,
圖中直角三角形有:
△ABC,△PAB,△PAD,△PAC,△ADB,△ADC,△PDB,△PDC 共8個,
故答案:8.
點評:本題考查三垂線定理的應(yīng)用,以及棱錐的結(jié)構(gòu)特征,體現(xiàn)數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx,a≥2

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:若a<5,則對任意x1x2∈(0,+∞),
x
 
1
x2
,有
f(x1)-f(x2)
x1-x2
>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2θ<0且|cosθ|=-cosθ,問點P(tanθ,secθ)在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 2
 0
(3x2+4x3)
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“?x∈R,5x+3>m”為真命題,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+ax2-2x+5在區(qū)間(
1
3
,
1
2
)上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1(x≤0)
-2x(x>0)
,則f[f(1)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為正方體ABCD-A1B1C1D1對角線BD1上的一點,且BP=λBD1(λ∈(0,1)).下面結(jié)論:
①A1D⊥C1P;
②若BD1⊥平面PAC,則λ=
1
3

③若△PAC為鈍角三角形,則λ∈(0,
1
2
);
④若λ∈(
2
3
,1),則△PAC為銳角三角形.
其中正確的結(jié)論為
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名運動員爭奪3項比賽冠軍(每項比賽無并列冠軍),獲得冠軍的可能種數(shù)為(  )
A、35
B、
C
3
5
C、
A
3
5
D、53

查看答案和解析>>

同步練習(xí)冊答案