【題目】如果直線a平行于平面,則(

A.平面內(nèi)有且只有一直線與a平行

B.平面內(nèi)有無數(shù)條直線與a平行

C.平面內(nèi)不存在與a平行的直線

D.平面內(nèi)的任意直線與直線a都平行

【答案】B

【解析】

根據(jù)線面平行的性質(zhì)解答本題.

根據(jù)線面平行的性質(zhì)定理,已知直線平面.
對于A,根據(jù)線面平行的性質(zhì)定理,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故A錯誤;
對于B,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內(nèi)有無數(shù)條直線與a平行;故B正確;
對于C,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,所以C錯誤;
對于D,根據(jù)線面平行的性質(zhì),過直線a的平面與平面相交得到的交線,則直線,則在平面內(nèi)與直線相交的直線與a不平行,所以D錯誤;
故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=sin()的圖象與函數(shù)gx)的圖象關(guān)于x=1對稱,則函數(shù)gx)在(﹣6,﹣4)上( 。

A. 單調(diào)遞增 B. 單調(diào)遞減 C. 先增后減 D. 先減后增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某輪船公司的一艘輪船每小時花費的燃料費與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時當船速為10海里小時,它的燃料費是每小時96元,其余航行運作費用(不論速度如何)總計是每小時150元假定運行過程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費用燃料費航行運作費用的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)學上,常用符號來表示算式,如記=,其中.

1,,,…,成等差數(shù)列,且,求證:;

2,,記,且不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點P為圓心的圓經(jīng)過點A(-1,0)和B34),線段AB的垂直平分線交圓P于點CD,且|CD|.

1)求直線CD的方程;

2)求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,證明:;

(3)若,直線與曲線相切,證明:.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結(jié)論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

()a1,的解集;

() 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案