如圖,已知橢圓過(guò)點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

    (Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

   (Ⅱ)設(shè)直線、斜率分別為

證明:

(ⅱ)問(wèn)直線上是否存在一點(diǎn)

使直線的斜率

滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

 

 

【答案】

 【命題意圖】本小題主要考查橢圓的基本概念和性質(zhì),考查直線與橢圓的位置關(guān)系,考查數(shù)形結(jié)合思想、分類(lèi)討論思想以及探求解決新問(wèn)題的能力。

    【解析】(I)解:因?yàn)闄E圓過(guò)點(diǎn)(1,),e=

    所以,

    又

    所以

    故所求橢圓方程為

   (II)(i)設(shè)點(diǎn)P,因?yàn)辄c(diǎn)P不在x軸上,

所以,又

    所以

 

因此結(jié)論成立

   (ⅱ)解:設(shè),,,

   

   

   

    故

   

   

    若,須有=0或=1.

    ① 當(dāng)=0時(shí),結(jié)合(。┑慕Y(jié)論,可得=-2,所以解得點(diǎn)P的坐標(biāo)為(0,2);

    ② 當(dāng)=1時(shí),結(jié)合(。┑慕Y(jié)論,可得=3或=-1(此時(shí)=-1,不滿足,舍去 ),此時(shí)直線CD的方程為,聯(lián)立方程

    因此

    綜上所述,滿足條件的點(diǎn)P的坐標(biāo)分別為,(,)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

如圖,已知橢圓過(guò)點(diǎn),兩個(gè)焦點(diǎn)分別為為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)試問(wèn)直線的斜率之和是否為定值,若為定值,求出以線段為直徑且過(guò)點(diǎn)的圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二5月月考考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、,為坐標(biāo)原點(diǎn).設(shè)直線的斜率分別為、

(i)證明:;

(ii)問(wèn)直線上是否存在點(diǎn),使得直線、、的斜率、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省毫州市高二上學(xué)期質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題

如圖,已知橢圓過(guò)點(diǎn).,離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、,為坐標(biāo)原點(diǎn).

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)設(shè)直線、的斜線分別為.      證明:

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(山東卷)文科數(shù)學(xué)全解全析 題型:解答題

(本小題滿分14分)

如圖,已知橢圓過(guò)點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線、斜率分別為.

(。┳C明:

(ⅱ )問(wèn)直線上是否存在一點(diǎn),使直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案