已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34
.求橢圓及雙曲線的方程.
分析:利用待定系數(shù)法求圓錐曲線的方程,設出橢圓方程,寫出雙曲線的方程;據(jù)橢圓與雙曲線中的三參數(shù)的關系列出方程組,求出方程.
解答:解:設橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
則根據(jù)題意,雙曲線的方程為
x2
a2
-
y2
b2
=1且滿足
a2-b2
a
=
4
5
2
a2+b2
=2
34
解方程組得
a2=25
b2=9

∴橢圓的方程為
x2
25
+
y2
9
=1,雙曲線的方程
x2
25
-
y2
9
=1
點評:本題考查求曲線方程常用的方法:待定系數(shù)法,使用與曲線的方程形式已知.考查橢圓中三參數(shù)的關系是:a2=b2+c2
雙曲線中三參數(shù)的關系:c2=b2+a2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•日照一模)已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34

(I)求橢圓及雙曲線的方程;
(Ⅱ)設橢圓的左、右頂點分別為A,B,在第二象限內取雙曲線上一點P,連結BP交橢圓于點M,連結PA并延長交橢圓于點N,若
BM
=
MP
.求四邊形ANBM的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:天利38套《2008全國各省市高考模擬試題匯編 精華大字版》、數(shù)學理 題型:044

已知離心率為e=2的雙曲線C:,雙曲線C的右焦點關于直線x+y+=0的對稱點在雙曲線C的左準線上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)過點M(5,0)的直線l與雙曲線C交于A、B兩點,交y軸于N點,當=λ=μ,且=3時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34
.求橢圓及雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:日照一模 題型:解答題

已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34

(I)求橢圓及雙曲線的方程;
(Ⅱ)設橢圓的左、右頂點分別為A,B,在第二象限內取雙曲線上一點P,連結BP交橢圓于點M,連結PA并延長交橢圓于點N,若
BM
=
MP
.求四邊形ANBM的面積.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案