【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:
(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;
(Ⅱ)若公交公司將2路車發(fā)車時間調整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學期望.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:
(Ⅰ)根據(jù)莖葉圖可得落在各組內的頻數(shù),求得頻率后可得的值,根據(jù)所得數(shù)據(jù)可得頻率分布直方圖.(Ⅱ)由題意得候車時間中不超過10分鐘的數(shù)據(jù)共有34個,根據(jù)古典概型概率公式可得所求概率為0.68.
試題解析:
(Ⅰ)由莖葉圖可得落入分組區(qū)間內的頻數(shù)依次為4、4、10、12、8、6、4、2,
于是可得各組分組區(qū)間相應的的值依次為0.02、0.02、0.05、0.06、0.04、0.03、0.02、
0.01,
依此畫出頻率分布直方圖如下圖所示.
(Ⅱ)調整為間隔15分鐘發(fā)一趟車之后,候車時間原本不超過10分鐘的數(shù)據(jù)就有14個,發(fā)生了變化的候車時間中不超過10分鐘的數(shù)據(jù)又增加了20個,共計34個.
所以候車時間不超過10分鐘的頻率為,
由此估計一名乘客候車時間不超過10分鐘的概率為0.68.
科目:高中數(shù)學 來源: 題型:
【題目】幾千年的滄桑沉淀,凝練了西樵山的美,清幽秀麗的自然風光,文化底蘊厚重的旅游,古樸自然的民俗風情.自明清以來,文人雅士,群賢畢至,旅人游子,紛至沓來,使秀美的西樵山成為名嗓南粵的旅游熱點.如圖,游客從某旅游景區(qū)的景點處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從乘景區(qū)觀光車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從乘觀光車到,在處停留20分鐘后,再從勻速步行到.假設觀光車勻速直線運行的速度為250米/分鐘,山路長為2340米,經(jīng)測量,,.
(1)求觀光車路線的長;
(2)問乙出發(fā)多少分鐘后,乙在觀光車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n-1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=log4an+1,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A. φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B. α,β∈R,使cos(α+β)=cosα+cosβ
C. 向量a=(2,1),b=(-1,0),則a在b的方向上的投影為2
D. “|x|≤1”是“x≤1”的既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),若函數(shù)y=與y=f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則 (xi+yi)=( )
A. 0 B. m
C. 2m D. 4m
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉換重大工程.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖3是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.
表1:設備改造后樣本的頻數(shù)分布表
(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關;
(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產品合格率的角度對改造前后設備的優(yōu)劣進行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質量指標值落在內的定為一等品,每件售價240元;質量指標值落在或內的定為二等品,每件售價180元;其它的合格品定為三等品,每件售價120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現(xiàn)有一名顧客隨機購買兩件產品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓。
(1)若點在圓內,求的取值范圍;
(2)若過點的圓的切線只有一條,求切線的方程;
(3)當時,過點的直線被圓截得的弦長為,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com