已知△ABC的三個內角A,B,C的對邊依次為a,b,c,外接圓半徑為1,且滿足,則△ABC面積的最大值為
( )
A.
B.
C.
D.
【答案】分析:利用同角三角函數(shù)間的基本關系化簡已知等式的左邊,利用正弦定理化簡已知的等式右邊,整理后利用兩角和與差的正弦函數(shù)公式及誘導公式化簡,根據(jù)sinC不為0,可得出cosA的值,然后利用余弦定理表示出cosA,根據(jù)cosA的值,得出bc=b2+c2-a2,再利用正弦定理表示出a,利用特殊角的三角函數(shù)值化簡后,再利用基本不等式可得出bc的最大值,進而由sinA的值及bc的最大值,利用三角形的面積公式即可求出三角形ABC面積的最大值.
解答:解:由r=1,利用正弦定理可得:c=2rsinC=2sinC,b=2rsinB=2sinB,
∵tanA=,tanB=,
變形為:==
∴sinAcosB=cosA(2sinC-sinB)=2sinCcosA-sinBcosA,
即sinAcosB+cosAsinB=sin(A+B)=sinC=2sinCcosA,
∵sinC≠0,∴cosA=,即A=,
∴cosA==
∴bc=b2+c2-a2=b2+c2-(2rsinA)2=b2+c2-3≥2bc-3,
∴bc≤3(當且僅當b=c時,取等號),
∴△ABC面積為S=bcsinA≤×3×=,
則△ABC面積的最大值為
故選D
點評:此題考查了正弦、余弦定理,同角三角函數(shù)間的基本關系,兩角和與差的正弦函數(shù)公式,誘導公式,三角形的面積公式,以及基本不等式的運用,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點的A、B、C及平面內一點P滿足
PA
+
PB
+
PC
=
AB
,下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A、B、C及平面內一點P,若
PA
+
PB
+
PC
=
AB
,則點P與△ABC的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點ABC及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內一點M(2,1)引一條弦,使得弦被M點平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A,B,C及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習冊答案