19.為了應(yīng)對(duì)日益嚴(yán)重的氣候問題,某氣象儀器科研單位研究出一種新的“彈射型”氣候儀器,這種儀器可以彈射到空中進(jìn)行氣候觀測(cè),如圖所示,A,B,C三地位于同一水平面上,這種儀器在C地進(jìn)行彈射實(shí)驗(yàn),觀測(cè)點(diǎn)A,B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音比B地晚$\frac{2}{17}$秒(已知聲音傳播速度為340米/秒),在A地測(cè)得該儀器至高點(diǎn)H處的仰角為30°,則這種儀器的垂直彈射高度HC=140$\sqrt{3}$米.

分析 由題意設(shè)AC=x米,利用條件和聲速表示出BC,利用余弦定理列出方程,化簡(jiǎn)后求出AC的值,在RT△ACH中,由AC和∠CAH=30°,利用正弦函數(shù)求出答案.

解答 解:由題意設(shè)AC=x米,
∵在A地聽到彈射聲音的時(shí)間比B地晚$\frac{2}{17}$秒,
∴BC=x-340×$\frac{2}{17}$=x-40,
在△ABC內(nèi),由余弦定理得:
BC2=BA2+CA2-2BA•CA•cos∠BAC,
則(x-40)2=x2+10000-100x,解得x=420,
在RT△ACH中,AC=420,∠CAH=30°,
所以CH=AC•tan∠CAH=140$\sqrt{3}$(米),
即該儀器的垂直彈射高度HC為140米,
故答案為:$140\sqrt{3}$米.

點(diǎn)評(píng) 本題考查余弦定理,正弦函數(shù)的實(shí)際運(yùn)用,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.關(guān)于x的函數(shù)y=ax,y=xa,y=loga(x-1),其中a>0,a≠1,在第一象限內(nèi)的圖象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題P:2016≤2017,則下列關(guān)于命題P說法正確的是.( 。
A.命題P使用了邏輯聯(lián)結(jié)詞“或”,是假命題
B.命題P使用了邏輯聯(lián)結(jié)詞“且”,是假命題
C.命題P使用了邏輯聯(lián)結(jié)詞“非”,是假命題
D.命題P使用了邏輯聯(lián)結(jié)詞“或”,是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,四邊形ABCD為距形,AB=$\sqrt{3}$,BC=1,以A為圓心,AD為半徑畫圓,交線段AB于E,在圓弧DE上任取一點(diǎn)P,則直線AP與線段BC有公共點(diǎn)的概率為(  )
A.$\frac{\sqrt{3}π}{12}$B.$\frac{12-\sqrt{3}π}{12}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m-1}$=1表示的曲線是焦點(diǎn)在x軸的雙曲線;命題q:關(guān)于m的不等式m2-(2a+1)m+a(a+1)≤0成立.
(1)若a=$\frac{1}{2}$,且p∧q為真,求實(shí)數(shù)m的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖的程序框圖,則輸出的n是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2),x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若m>0,n>0,且m+n=f[f(ln2)],則$\frac{1}{m}+\frac{2}{n}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知遞增的等比數(shù)列{an}滿足:a2•a3=8,a1+a4=9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列$\left\{{b_n}\right\}:{b_n}=2({2n-1}){a_n}(n∈{N^+})$,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.m,n是空間兩條不同直線,α,β是兩個(gè)不同平面.有以下四個(gè)命題:
①若m∥α,n∥β且α∥β,則m∥n; 
②若m⊥α,n⊥β且α⊥β,則m⊥n;
③若m⊥α,n∥β且α∥β,則m⊥n; 
④若m∥α,n⊥β且α⊥β,則m∥n.
其中真命題的序號(hào)是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案