函數(shù)f(x)=sin(ωx+?)(ω>0)對(duì)任意實(shí)數(shù)x均有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為 ________.
分析:由題意函數(shù)f(x)=sin(ωx+?)(ω>0)對(duì)任意實(shí)數(shù)x均有f(x
1)≤f(x)≤f(x
2),說(shuō)明f(x
1)是函數(shù)的最小值,f(x
2)是函數(shù)的最大值,只需求出函數(shù)的半周期即可求出|x
1-x
2|的最小值.
解答:函數(shù)f(x)=sin(ωx+?)(ω>0)對(duì)任意實(shí)數(shù)x均有f(x
1)≤f(x)≤f(x
2),
說(shuō)明f(x
1)是函數(shù)的最小值,f(x
2)是函數(shù)的最大值,
所以|x
1-x
2|的最小值就是函數(shù)的半周期,
.
故答案為:
點(diǎn)評(píng):本題是基礎(chǔ)題,考查函數(shù)的最值的理解,函數(shù)的周期的理解,能夠分析出最值與周期的關(guān)系,是本題的突破口,靈活應(yīng)用所學(xué)知識(shí)是解決數(shù)學(xué)問(wèn)題的關(guān)鍵.