(2009•楊浦區(qū)一模)△ABC中三內(nèi)角A、B、C所對邊為a、b、c.若行列式
.
ba
cb
.
=0
,且角A=
π
3
,則
bsinB
c
=
3
2
3
2
分析:由行列式的運算法則得到b2=ac,利用正弦定理及A的度數(shù)進行化簡,得到一個關(guān)系式,再利用正弦定理化簡所求式子,把得到的關(guān)系式代入即可求出值.
解答:解:由
.
ba
cb
.
=b2-ac=0,∴b2=ac,
由正弦定理及A=
π
3
,可得:
sin2B=sinAsinC=
3
2
sinC
,又A=
π
3
,
bsinB
C
=
sin2B
sinC
=sinA=
3
2

故答案為:
3
2
點評:此題屬于解三角形的題型,涉及的知識有:行列式的運算,正弦定理,以及特殊角的三角函數(shù)值,正弦定理很好的解決了三角形的邊角關(guān)系,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域為集合A,集合B={x|
5x+1
>1}.請你寫出一個一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)研究人員發(fā)現(xiàn)某種特別物質(zhì)的溫度y(單位:攝氏度)隨時間x(單位:分鐘)的變化規(guī)律是:y=m2x+21-x(x≥0,并且m>0).
(1)如果m=2,求經(jīng)過多少時間,該溫度為5攝氏度;
(2)若該物質(zhì)的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)若將一顆質(zhì)地均勻的骰子,先后拋擲兩次,出現(xiàn)向上的點數(shù)分別為a、b,設(shè)復(fù)數(shù)z=a+bi,則使復(fù)數(shù) z2為純虛數(shù)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)若集合A={x||x-1|>2},U=R,則?UA=
{x|-1≤x≤3}
{x|-1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)命題“若a≥b,則a3≥b3”的逆命題是
若a3≥b3,則a≥b
若a3≥b3,則a≥b

查看答案和解析>>

同步練習(xí)冊答案