【題目】已知平面,,,分別為,上的點,且,.
(1)求證:;
(2)若,直線與平面所成角的正弦值為,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)先證明BC⊥平面PAB,可得BC⊥AD,證明AD⊥平面PBC,得PC⊥AD,再證明PC⊥平面ADE,即可證明PC⊥DE;
(2)過點B作BE∥AP,則BZ⊥平面ABC,分別以BA,BC,BZ所在直線為x軸,y軸,z軸建立空間直角坐標系,設,根據(jù)PC⊥平面ADE,可得是平面ADE的一個法向量,從而向量與所成的角的余弦值的絕對值為,可求PA的值,利用題目條件求出平面的一個法向量,利用夾角公式可得二面角的余弦值.
(1)證明:因為平面,∴,
又,,
∴平面,∴.
又,,
∴平面,∴.
又,,
∴平面,∴.
(2)過點作,則平面,如圖所示
分別以,,所在直線為軸,軸,軸建立空間直角坐標系.
設,則,,,
因為平面,
∴是平面的一個法向量,
∴向量與所成的角的余弦值的絕對值為,
又,
,
∴,∴.
在中,,又,
∴為中點,∴,
∴,,
設平面的一個法向量為,
則,∴,∴,
又是平面的法向量,
∴,,
二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣2|+|x+1|.
(1)解不等式f(x)≥4.
(2)若f(x)+f(y)≤6,求x+y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國著名的數(shù)學家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的直角頂點在軸上,點為斜邊的中點,且平行于軸.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:
一周課外讀書時間/ | 合計 | |||||||||
頻數(shù) | 4 | 6 | 10 | 12 | 14 | 24 | 46 | 34 | ||
頻率 | 0.02 | 0.03 | 0.05 | 0.06 | 0.07 | 0.12 | 0.25 | 0.17 | 1 |
(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).
(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.
①求每層應抽取的人數(shù);
②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為.
(1)求直線l的普通方程與曲線C的直角坐標方程;
(2)設點,直線l與曲線C交于不同的兩點A、B,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com