【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=2時(shí), ,

由于f(x)≥2,

則①當(dāng)x<1時(shí),﹣2x+3≥2,∴x≤

②當(dāng)1≤x≤1時(shí),1≥2,無(wú)解;

③當(dāng)x>2時(shí),2x﹣3≥2,∴x≥

綜上所述,不等式f(x)≥2的解集為:(﹣∞, ]∪[ ,+∞)


(2)解:令F(x)=f(x)+|x﹣1|,則

所以當(dāng)x=1時(shí),F(xiàn)(x)有最小值F(1)=a﹣1,

只需a﹣1≥1,解得a≥2,所以實(shí)數(shù)a的取值范圍為[2,+∞)


【解析】(1)通過(guò)分類討論,去掉絕對(duì)值函數(shù)中的絕對(duì)值符號(hào),轉(zhuǎn)化為分段函數(shù),即可求得不等式f(x)≥2的解集;(2)通過(guò)分類討論,去掉絕對(duì)值函數(shù)中的絕對(duì)值符號(hào),轉(zhuǎn)化為分段函數(shù),根據(jù)一次函數(shù)的單調(diào)性可得函數(shù)在R上先減后增,
得到函數(shù)的最小值為f(1)+|1﹣1|=f(1)=a﹣1,而不等式f(x)+|x﹣1|≥1解集為R即a﹣1≥1恒成立,解之即可得到實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識(shí),掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担约皩(duì)絕對(duì)值不等式的解法的理解,了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C上的動(dòng)點(diǎn)P)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B1,0)距離之比為

(1)求曲線C的方程。

(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正項(xiàng)等比數(shù)列{an},若2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+log3a3+…log3an , 求數(shù)列{ }的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若互不相等的實(shí)數(shù)x1 , x2 , x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是(
A.( ]
B.(
C.( ]
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax﹣ ﹣5lnx,其中a∈R.
(1)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2﹣mx+4,當(dāng)a=2時(shí),若x1∈(0,1),x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e 的解集是(
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓x2+y2﹣12x+32=0的圓心為Q,過(guò)點(diǎn)P(0,2)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B.
(1)求k的取值范圍;
(2)是否存在常數(shù)k,使得向量 共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=9,點(diǎn)A(-5,0)直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對(duì)于圓C上任一點(diǎn)P都有一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知點(diǎn)A(-1,-2),B(1,3),P為x軸上的一點(diǎn),求|PA|+|PB|的最小值;

(2)已知點(diǎn)A(2,2),B(3,4),P為x軸上一點(diǎn),求||PB|-|PA||的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案