已知(x-
a
x
8展開式中常數(shù)項(xiàng)為5670,其中a是常數(shù),則展開式中各項(xiàng)系數(shù)的和是( 。
A、28
B、48
C、28或48
D、1或28
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于5670,求得實(shí)數(shù)a的值,令x=1可得展開式中各項(xiàng)系數(shù)之和.
解答: 解:二項(xiàng)式展開式的通項(xiàng)公式為 Tr+1=
C
r
8
•(-a)8-r•x2r-8,
令2r-8=0,求得r=4,故展開式中常數(shù)項(xiàng)為
C
4
8
•(-a)4=5670,故a=±3,
故令x=1可得展開式中各項(xiàng)系數(shù)之和為28或48,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)A(2,0),且與直線2x+y+2=0在y軸上的截距相同,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
4-x≥0
y≤x
2x+y+k≤0
且z=x+3y的最大值為12,則實(shí)數(shù)k=( 。
A、-12
B、-
32
3
C、-9
D、-
14
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,周期為
π
2
的是(  )
A、y=sin
x
2
B、y=tan2x
C、y=cos2x
D、y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=(
1
2
)x2+1,x∈R}
,則滿足A∩B=B的集合B可以是( 。
A、{0,
1
2
}
B、{x|-1≤x≤1}
C、{x|0<x<
1
2
}
D、{x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:x≥k,q:
3
x+1
<1,如果p是q的充分不必要條件,則實(shí)數(shù)k的取值范圍是(  )
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(2,2),
OB
=(4,1),
OP
=(x,0),則當(dāng)
AP
BP
最小時(shí)x的值是(  )
A、-3B、3C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
9
=1(a>0)
的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,則雙曲線的離心率是(  )
A、
4
3
B、
5
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(1)證明:SA⊥BC;
(2)求二面角C-SD-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案