【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)為5組: , , , , ,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15次的學(xué)生人數(shù);
(Ⅲ)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取2人,求至少抽到1名女生的概率.
【答案】(I);(II);(III)
【解析】試題分析:(1)直接由頻率分布直方圖即可計(jì)算出的值即可;(2)首先求出在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù)和在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù),然后求出在所抽取的男生中,月上網(wǎng)次數(shù)不少于15次的學(xué)生即可;(3)首先記“在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取2人,至少抽到1名女生”為事件,然后分別求出在抽取的女生和男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和人數(shù),記這2名女生為, ,這3名男生為, , ,并列舉各自的可能種數(shù),最后由古典概型的計(jì)算公式即可得出所求的結(jié)果.
試題解析:(1).
(2)在所抽取的女生中,月上網(wǎng)次數(shù)不少于15次的學(xué)生頻率為(0.05+0.02)×5=0.35,所以,在所抽取的女生中,月上網(wǎng)次數(shù)不少于15次的學(xué)生有0.03×20=7人.
在所抽取的男生中,月上網(wǎng)次數(shù)不少于15次的學(xué)生頻率為(0.04+0.03)×5=0.35,所以,在所抽取的男生中,月上網(wǎng)次數(shù)不少于15次的學(xué)生有0.03×20=7人.
故抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15次的學(xué)生人數(shù)有7+7=14人.
(Ⅲ)記“在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取2人,至少抽到1名女生”為事件,在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率為0.02×5=0.1,人數(shù)為0.1×20=2人,
在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率為0.03×5=0.15,人數(shù)為0.15×20=3人,
記這2名女生為, ,這3名男生為, , ,
則在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取2人,所有可能結(jié)果有10種,即, , , , , , , , , ,
而事件包含的結(jié)果有7種,它們是, , , , , , ,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在處的切線與直線垂直,求的值;
(2)關(guān)于的不等式在上恒成立,求的取值范圍;
(3)討論函數(shù)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列命題,其中正確命題的個(gè)數(shù)為
①當(dāng)時(shí),上單調(diào)遞增;
②當(dāng)時(shí),存在不相等的兩個(gè)實(shí)數(shù),使;
③當(dāng)時(shí),有3個(gè)零點(diǎn).
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,離心率為,是上的一個(gè)動(dòng)點(diǎn).當(dāng)是的上頂點(diǎn)時(shí),的面積為.
(1)求的方程;
(2)設(shè)斜率存在的直線與的另一個(gè)交點(diǎn)為.若存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由中央電視臺(tái)綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國(guó)首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國(guó)的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對(duì)節(jié)目的喜愛程度,電視臺(tái)隨機(jī)調(diào)查了、兩個(gè)地區(qū)的100名觀眾,得到如下的列聯(lián)表:
非常滿意 | 滿意 | 合計(jì) | |
30 | |||
合計(jì) |
已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為,且.
(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少;
(Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系;
(Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.
附:參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某養(yǎng)殖產(chǎn)品在某段時(shí)間內(nèi)的生長(zhǎng)情況,在該批產(chǎn)品中隨機(jī)抽取了120件樣本,測(cè)量其增長(zhǎng)長(zhǎng)度(單位:),經(jīng)統(tǒng)計(jì)其增長(zhǎng)長(zhǎng)度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成頻率分布直方圖,如圖所示其中增長(zhǎng)長(zhǎng)度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.
(Ⅰ)求圖中的值;
(Ⅱ)已知這120件產(chǎn)品來自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗(yàn)區(qū) | 試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)產(chǎn)品 | 20 | ||
非優(yōu)質(zhì)產(chǎn)品 | 60 | ||
合計(jì) |
將聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)產(chǎn)品與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
(Ⅲ)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機(jī)抽取4件進(jìn)行分析研究,計(jì)算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2002年在北京召開的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家的弦圖為基礎(chǔ)設(shè)計(jì)的.弦圖是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).設(shè)其中直角三角形中較小的銳角為,且,如果在弦圖內(nèi)隨機(jī)拋擲1000米黑芝麻(大小差別忽略不計(jì)),則落在小正方形內(nèi)的黑芝麻數(shù)大約為( )
A. 350B. 300C. 250D. 200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P到點(diǎn)F(0,1)的距離比它到直線y=-3的距離少2.
(1)求點(diǎn)P的軌跡E的方程.
(2)過點(diǎn)F的兩直線l1、l2分別與軌跡E交于A,B兩點(diǎn)和C,D兩點(diǎn),且滿足=0,設(shè)M,N兩點(diǎn)分別是線段AB,CD的中點(diǎn),問直線MN是否恒過一定點(diǎn),若經(jīng)過,求定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過定點(diǎn),請(qǐng)給出理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com