雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(c,0),以原點(diǎn)為圓心,c為半徑的圓與雙曲線在第二象限的交點(diǎn)為A,若此圓在A點(diǎn)處的切線的斜率為
3
3
,則雙曲線C的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(m,n),根據(jù)切線垂直于過(guò)切點(diǎn)的半徑算出n=-
3
m.而以點(diǎn)O為圓心,c為半徑的圓方程為x2+y2=c2,將A的坐標(biāo)代入圓方程,算出點(diǎn)A的坐標(biāo),將此代入雙曲線方程,并結(jié)合c2=a2+b2化簡(jiǎn)整理,再根據(jù)離心率公式整理得e4-8e2+4=0,解之即可得到該雙曲線的離心率.
解答: 解:設(shè)A的坐標(biāo)為(m,n),可得直線AO的斜率滿足k=-
3
,即n=-
3
m…①
∵以點(diǎn)O為圓心,c為半徑的圓方程為x2+y2=c2
∴將①代入圓方程,得m2+3m2=c2,解得m=-
c
2
,n=
3
2
c
將點(diǎn)A(-
c
2
,
3
2
c)代入雙曲線方程,得
c2
4
a2
-
3
4
c2
b2
=1

化簡(jiǎn)得:
1
4
c2b2-
3
4
c2a2=a2b2,
∵c2=a2+b2
∴b2=c2-a2代入上式,化簡(jiǎn)整理得c4-8c2a2+4a4=0
兩邊都除以a4,整理得e4-8e2+4=0,解之得e2=4+2
3
或e2=4-2
3

∵雙曲線的離心率e>1,∴該雙曲線的離心率e=
3
+1

故答案為:
3
+1
點(diǎn)評(píng):本題給出雙曲線滿足的條件,求雙曲線的離心率,著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)、直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)P(1,-2).
(Ⅰ)求拋物線C的方程,并求其準(zhǔn)線方程;
(Ⅱ)過(guò)焦點(diǎn)F且斜率為2的直線l與拋物線交于A,B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:(x+2)(x-10)>0,q:[x-(1-m)][x-(1+m)]≤0,(m>0),若q是¬p的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①若a<b,則a2<b2;
②若a≥b>-1,則
a
1+a
b
1+b
;
③若正整數(shù)m和n滿足m<n,則
m(n-m)
n
2
;
④若x>0,且x≠1,則lnx+
1
lnx
≥2.
其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下4個(gè)式子的值都等于同一個(gè)常數(shù)
3
4

①sin223°+cos7°-sin23°•cos7°=
3
4

②sin2(-17°)+cos247°-sin(-17°)•cos47°=
3
4

③sin215°+cos215°-sin15°•cos15°=
3
4

④sin253°+cos2(-23°)-sin53°•cos(-23°)=
3
4

請(qǐng)將該同學(xué)的發(fā)現(xiàn)推廣為一般的三角恒等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)滿足對(duì)任意的正整數(shù)m,n,都有f(m+n)=f(m)×f(n),且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+…+
f(2012)
f(2011)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖所示的偽代碼,當(dāng)輸入的a,b分別為4,3時(shí),最后輸出的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1+i)(2-i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且其圖象向左平移
π
12
個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( 。
A、關(guān)于點(diǎn)(
π
6
,0)對(duì)稱
B、關(guān)于直線x=
π
3
對(duì)稱
C、關(guān)于點(diǎn)(
π
3
,0)對(duì)稱
D、關(guān)于直線x=
π
6
對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案