【題目】已知函數(shù)().

1)若,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,若函數(shù)上的最大值和最小值的和為1,求實數(shù)的值.

【答案】1)答案見解析.(2

【解析】

1)利用的導(dǎo)函數(shù),求得的單調(diào)區(qū)間.

2)利用的導(dǎo)函數(shù),求得的單調(diào)區(qū)間,對分成,,三種情況進(jìn)行分類討論,結(jié)合在區(qū)間上最大值和最小的和為,求得實數(shù)的值.

1)當(dāng)a=3時,f(x)=2x33x2+1,xR,

f'(x)=6x26x=6x(x1),

f'(x)>0得,x<0x>1;令f'(x)<0得,0<x<1,

∴函數(shù)f(x)的的單調(diào)增區(qū)間為(﹣∞,0)和(1,+∞),單調(diào)遞減區(qū)間為(0,1),

2)函數(shù)f(x)=2x3ax2+1,a>0,

f'(x)=6x22ax=2x(3xa),

f'(x)=0得,x=0,

列表:

x

(﹣∞,0)

0

(0,)

(,+∞)

f'(x)

+

0

0

+

f(x)

遞增

極大值

遞減

極小值

遞增

①當(dāng)0<a2時,0,

∴函數(shù)f(x)在[﹣1,0]上單調(diào)遞增,在[0,]上單調(diào)遞減,在[,1]上單調(diào)遞增,

又∵f(﹣1)=﹣1a,f(0)=1,f1)=3a1,f()=1,且0<f()<1,

f(x)max=f1)=3a,f(x)min=f(﹣1)=﹣1a,

∴(3a)+(﹣1a)=1,

a,

②當(dāng)2<a<3時,0,

∴函數(shù)f(x)在[﹣1,0]上單調(diào)遞增,在[0,]上單調(diào)遞減,在[,1]上單調(diào)遞增,

又∵f(﹣1)=﹣1a,f(0)=1,f1)=3a,f()=1,且0<f()<1,0<f1)<1,

f(x)max=f(0)=1,f(x)min=f(﹣1)=﹣1a,

1+(﹣1a)=1,

a=﹣1,不符合題意,舍去,

③當(dāng)a3時,,

∴函數(shù)f(x)在[﹣1,0]上單調(diào)遞增,在[0,1]上單調(diào)遞減,

f(x)max=f(0)=1,

又∵f(﹣1)=﹣1a,f1)=3a,∴f(x)min=f(﹣1)=﹣1a,

1+(﹣1a)=1,

a=﹣1,不符合題意,舍去,

綜上所述,若函數(shù)f(x)在[﹣1,1]上的最大值和最小值的和為1,實數(shù)a的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.

1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點

2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量,求每盤游戲出現(xiàn)音樂的概率,及隨機(jī)變量的期望;

3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計的相關(guān)知識分析分?jǐn)?shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若的兩個零點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集為{x|x≤1},求實數(shù)a的值;

2)證明:fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,短軸長為2,過定點的直線交橢圓于不同的兩點、(點在點,之間).

1)求橢圓的方程;

2)若,求實數(shù)的取值范圍;

3)若射線交橢圓于點為原點),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點是曲線為參數(shù))上的動點,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,以極點為中心,將線段順時針旋轉(zhuǎn)得到,設(shè)點的軌跡為曲線

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點的坐標(biāo)為,射線與曲線分別交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

同步練習(xí)冊答案