.(本小題滿分12分)數(shù)列的前項和為,,
(Ⅰ)求數(shù)列的通項; (Ⅱ)求數(shù)列的前項和
解:(Ⅰ),
,

,
數(shù)列是首項為,公比為的等比數(shù)列,
時,
      ………………… 5分
(Ⅱ),………………………6分
時,;………………………7分
時,,…………①
,………………………②………………………9分
得:

.………………………12分
.………………………13分
也滿足上式,
.  ………14分
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

..(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分。
設(shè)函數(shù),數(shù)列滿足。
⑴求數(shù)列的通項公式;
⑵設(shè),若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的等比數(shù)列,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)等比數(shù)列中,對任意時都有成等差,求公比的值
(2)設(shè)是等比數(shù)列的前項和,當成等差時,是否有一定也成等差數(shù)列?說明理由
(3)設(shè)等比數(shù)列的公比為,前項和為,是否存在正整數(shù),使成等差且也成等差,若存在,求出滿足的關(guān)系;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)
各項均為正數(shù)的數(shù)列的前項和為,滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列滿足,數(shù)列的前項和為,求;
(3)若數(shù)列,甲同學(xué)利用第(2)問中的,試圖確定的值是否可以等于2011?為此,他設(shè)計了一個程序(如圖),但乙同學(xué)認為這個程序如果被執(zhí)行會是一個“死循環(huán)”(即程序會永遠循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、數(shù)列的通項為=,,其前項和為,則使>48成立的的最小值為(   )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項和為 (n∈N*),且.數(shù)列滿足,,n=2,3,….
(Ⅰ)求數(shù)列  的通項公式;
(Ⅱ)求數(shù)列  的通項公式;
(Ⅲ)證明:對于 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)已知數(shù)列的前項和。
(1)求數(shù)列的通項公式
(2)記,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{}的前n項和=n2,{}為等比數(shù)列,且=,(-)=
⑴求數(shù)列{}和{}的通項公式;
⑵求數(shù)列{}的前n項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,是數(shù)列的前n項和,若,則最接近的整數(shù)是                     (   )
A.5B.4C.2D.1

查看答案和解析>>

同步練習(xí)冊答案