【題目】已知兩點,,動點與兩點連線的斜率滿足.
(1)求動點的軌跡的方程;
(2)是曲線與軸正半軸的交點,曲線上是否存在兩點,使得是以為直角頂點的等腰直角三角形?若存在,請說明有幾個;若不存在,請說明理由.
【答案】(Ⅰ)();(Ⅱ)3個
【解析】試題(Ⅰ)求動點的軌跡方程的一般步驟:1.建系——建立適當?shù)淖鴺讼担?/span>2.設點——設軌跡上的任一點P(x,y).3.列式——列出動點P所滿足的關(guān)系式.4.代換——依條件式的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為x,y的方程式,并化簡.5.證明——證明所求方程即為符合條件的動點的軌跡方程.
(Ⅱ)由題意可知設所在直線的方程為,則所在直線的方程為分別聯(lián)立橢圓方程求得弦長,,再由得解方程即可
試題解析:(Ⅰ)設點的坐標為(),則,, 2分
依題意,所以,化簡得, 4分
所以動點的軌跡的方程為(). 5分
注:如果未說明(或注),扣1分.
(Ⅱ)設能構(gòu)成等腰直角,其中為,
由題意可知,直角邊,不可能垂直或平行于軸,故可設所在直線的方程為,
(不妨設),則所在直線的方程為7分
聯(lián)立方程,消去整理得,解得,
將代入可得,故點的坐標為.
所以, 9分
同理可得,由,得,
所以,整理得,解得或11分
當斜率時,斜率;當斜率時,斜率;
當斜率時,斜率,
綜上所述,符合條件的三角形有個. 14分
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線()交于,兩點.
(1)當時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種汽車購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽油費共0.9萬元,汽車的維修費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.
(Ⅰ)設使用n年該車的總費用(包括購車費用)為f(n),試寫出f(n)的表達式;
(Ⅱ)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線交于兩點, 是的中點,過作軸的垂線交于點.
(1)證明:拋物線在點處的切線與平行;
(2)是否存在實數(shù),使以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,是橢圓的左、右焦點,過作直線交橢圓于兩點,若的周長為8.
(1)求橢圓方程;
(2)若直線的斜率不為0,且它的中垂線與軸交于點,求點的縱坐標的范圍;
(3)是否在軸上存在點,使得軸平分?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(為常數(shù)).
(1)當時,判斷在的單調(diào)性,并用定義證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 12 | 11 | 13 | 10 | 8 |
發(fā)芽率顆 | 26 | 25 | 30 | 23 | 16 |
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;
(2)請根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(2)中所得的線性回歸方程,預測溫差為時,種子發(fā)芽的顆數(shù).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點,,離心率為,的周長等于,點、在橢圓上,且在邊上.
(1)求橢圓的標準方程;
(2)如圖,過圓上任意一點作橢圓的兩條切線和與圓交與點、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點作圓的切線交雙曲線于、兩點,中點為,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com